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Abstract 
Popular conductive polymer polyaniline (PANI) has drawn a lot of attention from nanotechnology 
researchers who hope to use it to enhance sensors, optoelectronics, and photonics. PANI is easily 
doped with various acids and dopants due to its exceptional environmental stability and ease of 
production. This review focuses on the many chemical and physical procedures used to create PANI 
thin films. This review covers a number of PANI thin film characteristics, including their electrical and 
sensing, anti-corrosion, redox, antioxidant, and magnetic qualities. One very conductive polymer is 
PANI. It has drawn a lot of attention because of its special qualities, ease of synthesis, affordability, 
and high environmental stability in a variety of applications, including electronics, medications, and 
anti-corrosion materials. At the conclusion of this review, the most significant PANI applications are 
briefly discussed. 
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Introduction 
Depending on its degree of oxidation, polyaniline (PANI), formerly known as black aniline, 
can take on several forms. In addition, PANI is well-known for its environmental stability, 
doping potential with protonic acids, and simplicity (Bhadra et al., 2020; Park et al., 2016) [1, 

7]. By linking the 1, 4-coupling of the aniline monomer components, PANI can be found. 
PANI can be identified using FTIR benzenoid to quinonoid ratios, and it may exist in many 
oxidation states.  
Polyaniline (PANI), polythiophene (PTH), polypyrrole (PPY), and their byproducts are the 
main types of conjugated conductive polymers (Gómez et al., 2021) [14]. According to Liao 
(2018) [10], they have a wide range of possible uses, including microwave absorption, gas 
separation membrane, chemical sensor, rechargeable battery, photovoltaic cell, 
electromagnetic interference shielding, and photothermal therapy. These substances have 
potential uses in electronic devices, shields against electromagnetic interference, and 
electrodes for displays (Al-Oqla et al., 2015; Sobha et al., 2017) [9, 4]. For instance, PANI's 
low processing capacity, rigidity, and lack of biodegradability limit its biological 
applications. According to Kenry and Liu (2018) [22], the primary issue with PANI is its poor 
solubility, which is impacted by its stiff spine. Numerous techniques have been tried to 
increase its processability; two significant attempts to get beyond these drawbacks are 
chemical alterations, including the use of doped PANI and substitute PANI derivatives.  
Generally speaking, it is thought that one possible way to enhance the characteristics and 
functionality of PANI is to construct PANI-based compounds using both organic and 
inorganic nanofillers. Materials produced using these methods combine PANI with organic 
and inorganic nanoparticles in ways that are complimentary or synergistic. Intrinsically 
conducting polymers are organic polymers that exhibit the electrical, optical, and magnetic 
properties of metals; these polymers are electroactive and have the aforementioned 
behaviours while preserving their structural characteristics. These polymers exhibit good 
electrical conductivity without the need for conductive additives because of conjugated 
double bonds in their backbones. In a doped condition, they transform to high conductivity 
on their own. Through the doping method, which uses both N-type (electron donors) and P-
type (accepting electrons) dopants to induce an insulator-to-metal transition in electronic 
polymers, the conductivity of the polymers is increased to a metallic state from their 
insulating state (Heeger et al., 1988) [2]. It was demonstrated that by adding acidic or basic 
solutions during polymerization or post-processing, it may be chemically or 
electrochemically added to or removed from the polymer chain. 
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The resulting positive (hole) or negative (electron) ions are 
free to move throughout the polymer chain during this 
process. To generate materials with the synergistic impact of 
both PANI and inorganic nanoparticles, many forms of 
PANI composites with inorganic nanoparticles, such as 
CeO2, TiO2, ZrO2, Fe2O3, and Fe3O4, have been described 
(Aphesteguy and Jacobo, 2007) [16]. According to Prabhakar 
et al. (2011) [32], these composites find application in a 
multitude of sectors, including electrochromic devices, 
LEDs, EMI shielding, electrostatic discharge systems, 
batteries, and chemical and biological sensors. PANI is 

present in one of the three idealised oxidation states—
leucoemeraldine (white/clear), emeraldine (salt-
green/baseblue), or pernigraniline (blue/violet)—during the 
polymerization of aniline monomer (Fig. 1). It has multiple 
uses, including gas separation membranes (Beygisangchin et 
al., 2021) [25], chemical sensors (Stamenov et al., 2012) [34], 
and solar cells. PANI microtubes/nanofiber, PANI-multi-
walled carbon nanotubes (Wang et al., 2019) [41], and 
nanocomposites are employed as microwave safeguards and 
electromagnetic shielding materials (Saini et al., 2009) [33] in 
addition to all the other uses mentioned above. 

 

 
 

Fig 1: Numerous structural illustrations of different forms of polyaniline (DOI: 10.1039/d0ra07800j, RSC Advances). 
 

In order to create a close connection between PANI 
chemical alterations and real-world applications, this study 
primarily focuses on advancements in PANI chemical 
modification and enhanced characteristics during the 
previous few decades. To set the stage for further research, 
the paper also discusses the various approaches used to 
prepare PANI and PANI thin films. 
 
Synthesis of PANI 
In recent studies, there have been numerous reports for the 
oxidative polymerization technique of PANI preparation. In 
this technique, polymerization and doping occur 
simultaneously with chemical or electrochemical methods.  
Under the influence of a strong electrical field, 
electrospinning is also employed to synthesise fibrous 
polymer morphologies with nano- or micro-diameters. Here, 
a high voltage is delivered to the polymer droplets, causing 
the charged droplets to stretch as a result of surface tension. 
The liquid then erupts and begins to weave on the counter 
surface at a key point. Electrospinning and electrospraying 
work on the same principles. The sole technique available 
for creating large polymer fibrous structures is 
electrospinning. This method has been used to generate 

conducting polymers and their composites, such as pure 
polyaniline, polypyrrole, and polyaniline/polyethylene 
oxide/carbon nanotubes. Numerous variables affect 
electrospinning, including the polymer's molecular weight, 
viscosity, the distance between the spinneret and counter 
surface, temperature, humidity, and other variables 
(Cardenas et al., 2007; Laforgue and Robitaille, 2008) [20, 3]. 
One of the easiest ways to create polyaniline is by chemical 
oxidation; in this process, a monomer precursor of the 
corresponding polymer is combined with an oxidising agent 
in the presence of an appropriate acid in ambient conditions 
to produce products; the authors' preferred doping acid and 
oxidising agent are used in this process (Fig. 2). The 
synthesis of polyaniline is shown by the reaction media 
turning green. The same procedure is used for the 
preparation of the composite. Oxidising chemicals such as 
potassium bichromate, ceric nitrate, ammonium persulfate, 
ammonium peroxy disulfate, and so on are typically utilised. 
Effective modulation of the physical parameters by the 
conductivity is dependent on the pH of the acid dopant. 
When the pH is between 1 and 3, the polymer and 
composite have strong conductivity (Ravindrakumar, 
Bavane, 2014; Yang et al., 2020) [21, 23]. 
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Fig 2: The chemical oxidation method of polyaniline synthesis. 
 

Polyaniline is also made by interfacial polymerization, in 
which an aniline monomer is dissolved in an oxidant 
solution, an aqueous solution containing a dopant acid, and 
an organic solvent such as toluene. As an oxidant solution is 
introduced to the monomer solution, polymerization occurs 
in the interphase of these two immiscible liquids. The 
synthesis of polyaniline also employs a microemulsion 
approach; the only variation is in the surfactant employed. 
In this case, polymerization occurs at the interface between 
two immiscible liquids (Zeng et al., 2015; El-Basaty et al., 

2020) [45, 1]. 
 
PANI Applications 
By virtue of their inherent electrical activity, conductive 
polymers offer special qualities that have led to a wide 
range of uses. PANI is a highly conductive polymer that is 
gaining significant attention in a variety of applications due 
to its low cost, distinctive characteristics, and ease of 
manufacturing (Fig. 3).  

 

 
 

Fig 3: Numerous applications of PANI 
 

Electrochromic Glasses  
If an electric current flows through smart or electrochromic 
glass, it will change colour. The grade of voltage transfer 
across an electrochromic glass will dictate the glass's level 
of turbidity. Intelligent material's oxidation or reduction 
state is visible to the unaided eye. Among these materials is 
PANI, which has the ability to reflect blue light, much like a 
crystal medium in an electric current tunnel. Glass has many 
modes, colours, and translucencies when it comes to opacity 
(Yang and Mai, 2015) [35]. The creation of technologies 
having both internal and external applications is facilitated 
by this attribute. For instance, an electric current can be 
used to change the darkness of a car window over a wide 
range of potentials; similarly, antiquities in a museum's 
exhibition hall are protected from UV rays and artificial 

light (Zarrintaj et al., 2019) [37]. According to several studies 
(Tavares et al., 2014; Yang and Mai, 2015; Silva et al., 
2016; Chu et al., 2018; Lyu et al., 2020) [36, 35, 13, 17], 
discolouration in electrochromic glass is dependent on the 
electric current of the chains.  
 
Electroluminescence Machines 
Electroluminescence devices can be produced from 
materials that release light when an electric field or current 
is introduced. These are light-emitting diodes (LEDs) of a p-
n connection diode that, when the right voltage is applied, 
can produce radiation. Thus, photon energy can be released 
by combining electrons with the electron holes in the device 
(Jang et al., 2008) [18]. LEDs are built using PANI electro-
luminescence structures (Liu et al., 2013) [19].  
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Solar cells  
PANI has also encouraged the commercial application of 
low-cost solar cell fabrication technologies for solar cells 
(Xiao et al., 2014) [42]. PAN-based solar cells improve 
energy efficiency while lowering the cost of invention. 
Based on an electrolyte and a semiconductor, dye-sensitive 
solar cells (DSSCs) are low-cost, high-performance film 
solar cells (Hosseinnezhad et al., 2017a, b, c) [26, 27, 28]. 
 
Sensors 
PANI's various architectures and morphologies, including 
nanowires, have garnered significant interest for it as a 
sensor (Tahir et al., 2005) [44]. PANI will manufacture a 
variety of precision sensors, including chemical and 
biological sensors (Dhand et al., 2011) [5]. Because of 
PANI's exceptional surface area and potential for gas 
emission, researchers have attempted to utilise it in gas 
sensors with a variety of nanostructures, including 
nanofibers, nanowires, and nanotubes. Thus, PANI-based 
sensors-such as gas and glucose sensors-are developed for 
diagnostic applications (Ramanavicius and Ramanavicius, 
2021) [40].  
 
Supercapacitor  
According to Meng et al. (2013) [6], super capacitors are 
considered one of the most promising energy sources and 
will have a substantial commercial value in the future due to 
their wide range of applications, which include wearable 
technology and electrical and electronic equipment. PANI is 
a material that works well in supercapacitors due to its many 
oxidation states, high conductivity, and specific capacitance. 
The characteristics of PANI, such as its production 
technique, chemical and physical properties, dopant, and 
nanostructure, affect the electrochemical properties of 
supercapacitors in which it is utilised as a base material in 
the electrodes (Wang et al., 2012) [11]. The supercapacitors 
were created by combining PANI with a variety of carbon 
molecules, including graphene oxide, graphene, fullerene, 
and carbon nanotubes (Bandyopadhyay et al., 2017; Zhang 
et al., 2020) [31, 30]. For the same objective, metal 
nanoparticles containing PANI were also employed (Rantho 
et al., 2020) [29]. 
 
Medical Applications 
One of the most well-known ICPs, PANI, has a wide range 
of possible uses in biomedicine because of its hydrophilic 
environment, low toxicity, high environmental stability, and 
nanostructured shape, which all contribute to its excellent 
electrical conductivity and biocompatibility. The most 
recent biological activities and uses of PANI-based 
nanocomposites in the medical domains, including neural 
prosthesis/biotic-abiotic interfaces, scaffolds, and delivery 
systems, are described in this review (Zare et al., 2020) [8]. 
Medicine today is primarily an engineering field, and new 
intellectual technologies are needed to improve this field. 
Devices that compensate for nerve weakening and advance 
neuroscience are necessary for neuroscientists (Asplund et 
al., 2014) [24]. Biocompatibility conductive scaffolding has 
high bio-counterfeit qualities, and it has been used to treat 
organ problems (Dong et al., 2015; Atoufi et al., 2017) [39, 

43]. Furthermore, PANI applications have drawn a lot of 
interest in delivery systems, which has led to the exploration 
of novel delivery structures such electro-drug delivery 
systems (Dong et al., 2016) [38]. 

Conclusion 
The focus of all current research is on providing polymeric 
composites containing metals or their oxides in addition to 
different types of composites to enhance certain qualities. 
PANI has always drawn interest from academics in their 
studies and in a variety of applications, the most significant 
of which is electrical applications, due to its original unique 
electrical properties. During this investigation, we came to 
the conclusion that PANI's electrical characteristics may be 
enhanced for usage in sensor applications and other uses. 
Recent findings about the chemistry of PANI have 
motivated scientists to focus their attention on this area of 
study. It seemed to PANI to have key characteristics that set 
it apart from the other polymers. PANI's electrical 
conductivity is one of its most significant qualities, and its 
range of uses has allowed researchers to explore new areas 
in this area. It was discovered that PANI has actual 
electrical qualities that make it a key component of 
numerous applications that could greatly benefit humanity, 
such as fuel cells, solar cells, super capacitors, various 
sensors, and batteries of all kinds. It was also discovered 
that grafting PANI with certain nanomaterials to create 
PANI nanocomposites greatly enhances its electrical 
characteristics. During this study, we came to the conclusion 
that PANI's properties can be enhanced by grafting it with 
other materials, particularly nanomaterials, to create 
polymeric nanocomposites of PANI. These can then be used 
to enhance the applied properties of supercapacitors, gas 
sensors, and other devices, as this study has shown. 
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