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Abstract 
There is potent and simple method of synthesis of a new class of heterocycles called isoxazolidines. 

The synthesis is achieved here by 1, 3 dipolar cycloaddition with α-Glutaraldehyde-N-aryl nitrone 

acting as a dipole and cinnamaldehyde acting as a dipolarophile. Reaction of α- Glutaraldehyde-N-aryl 

nitrone and different substituted cinnamaldehydes, new isoxazolidines has been precisely synthesized 

with yields ranging from 85 to 90 percent. The synthesized heterocyclic compounds are characterized 

by UV, FT-IR and NMR techniques. The isoxazolidines thus synthesized have particular antibacterial 

properties which shown biologically active and detained bacterial activity amongst Bacillus Marisflavi 

and Pseudomonas aeruginosa. 

 

Keywords: α-Glutaraldehyde-N-aryl nitrone, cinnamaldehyde, reflux, isoxazolidine, antibacterial 

activity 

 

Introduction 
1, 3- Dipolar Cycloaddition reactions represent one of the maximum extensive organic 

chemistry synthesis techniques, considering that they're important in the modern-day 

synthesis of natural products and physiologically lively compounds [1]. For several 1,3 -

dipoles, including nitrones [2], nitrile oxides [3], nitrile imines [4], diazoalkanes [5], and 

carbonyl ylides [6], extraordinarily enantioselective 1,3-dipolar cycloaddition techniques 

catalyzed via chiral Lewis acids had been mounted over the last ten years [7]. One of the most 

important processes for producing N-containing heterocycles is the 1, 3-dipolar 

cycloaddition response of nitrones and nitrile oxide [8]. Solid-state synthesis has recently 

received popularity as a contemporary artificial technique for physiologically energetic 

chemical substances. Intermolecular and intramolecular cycloaddition reactions are critical in 

answer and solid-section chemistry for simply manufacturing cyclic scaffolds. The [3+2]-

cycloaddition reaction of nitrones to alkenes is a powerful synthetic method used to produce 

isoxazolidines [9-19]. According to the trend, 5-substituted isoxazolidines are synthesized from 

mono- and 1, 1-disubstituted alkenes [20]. More often than now, combinations of 

regioisomers are formed in cycloaddition strategies with 1, 2-disubstituted alkenes. Still, 

depending on the substitution bond, the major isomers usually have fewer electron-rich 

substituents in the 4-functionality. Right here the nitrones are organized with the aid of 

phenyl hydroxylamine and glutaraldehyde which has chosen as dipole and Cinnamaldehyde 

is a flavonoid that offers the spice cinnamon and its taste and smell. It takes place certainly 

within the bark of cinnamon wood and exclusive species of the genus Cinnamomum which 

consist of camphor and it has extensive biological activities. Here, distinctive 

cinnamaldehydes have chosen as a dipolarophile in the 1, 3 dipolar cycloaddition which 

reacts with α-Glutaraldehyde-N-aryl-nitrone to produce various isoxazolidine systems. The 

synthesized isoxazolidine heterocycles have power over two bacterial strains. 

 

Material and Methods 

All of the chemicals were of high reagent grade and were utilised without additional 

purification. All melting points were measured in uncorrected open capillaries. TMS was 

used as an internal standard for the [1] HNMR and [13] CNMR spectra, which were recorded 

on a Bruker 400MHz& 100MHz in CDCl3.  
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All chromatographic treatments were carried out on silica 

gel 60-120 mesh with petroleum ether-ethyl acetate as 

eluent. Coupling constants are reported in Hertz, and 

chemical shifts are indicated in parts per million (δ-scale). 

Other approaches, such as IR and UV- vis were captured by 

the Jasco spectrometer and Perkin Elmer. 

 

General procedure 

Cycloaddition reaction of α-Glutaraldehyde-N-aryl 

nitrone with Cinnamaldehyde- Synthesis of 3-(4-

oxobutyl)-2, 4-diphenyl isoxazolidine-5-carbaldehyde 

A mixture of α-Glutaraldehyde-N-aryl nitrone (1) and 

Cinnamaldehyde (2) is refluxed in toluene (50ml) for the 

time period specified in Scheme I. After completion of the 

reaction (as indicated by TLC), the solvent is removed 

under reduced pressure and the product (3) is recrystallised 

from petroleum ether. (Scheme I) 

 

Results and Discussion 

Recent research has focused on the synthesis of 

isoxazolidines through 1, 3 dipolar cycloaddition, in 

addition to the assessment of their spectral and structural 

features of the impact of substituents on the confirmation of 

the imperative five membered isoxazolidine ring [21, 24]. 

Similarly, in the present investigation we deliberate to 

synthesize a new heterocycles with isoxazolidine unit with 

different structural pattern. 

A comprehensive analysis of the literature revealed that 

there is no reporting on the cycloaddition of α-

Glutaraldehyde-N-aryl nitrones (1) with the functional 

groups and alkene moiety. Cinnamaldehyde (2), a novel 

dipolarophile, is intriguing due to its active double bond 

along with the aldehyde functional group. This can result in 

the synthesis of cycloadducts by the reaction of α-

Glutaraldehyde-N-aryl nitrone. For the present study, α-

Glutaraldehyde-N-aryl nitrone (1) is the preferred dipole. 

An equimolar ratio of α-Glutaraldehyde-N-aryl nitrone and 

Cinnamaldehyde is refluxed in toluene for 15-20 hours. 

After working up the reaction, it is found that only the 

product predominate the reaction mixture, as evidenced by 

TLC with crude NMR mixture, and the product is separated 

using column chromatography. The product isolated is 

identified as 3-(4-oxobutyl)-2, 4-diphenyl isoxazolidine-5-

carbaldehyde (3). From the recent literature26, a strong 

indication of the regio and stereoselectivities involved in the 

reaction has no other additional regio and stereoisomer 

resulting from the addition. It is clear that one additional 

potential activated double bond has been added to the 

cycloadduct produced in (3). As the synthesized 

isoxazolidine has three chiral centres, eight isomers are 

possible; among that any one of the isoxazolidine 

predominates in the crude reaction mixture. 

Finally, we choose to examine the cycloaddition of the 

Glutaraldehyde-N-aryl nitrone compound (1) as our initial 

model which reacts with Cinnamaldehyde as a dipolarophile 

(2).  
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The 1H NMR spectrum shows the signal at δ 3.82 (1H, 

dd, J = 8.1, 6.9 Hz), 4.13 (1H, dt, J = 8.1, 6.8 Hz), 5.17 (1H, 

dd, J = 6.9, 3.8 Hz) which confirms the formation of novel 

isoxazolidine. And its miles feasible to attain the same 

product by means of microwave irradiation that is a simple 

and price green approach to produce new heterocycles. 

There is substantial evidence to support the trans 

arrangement of the C- and N-aryl groups in nitrones 

produced from aromatic aldehydes. This works on the basic 

assumption of comparing the UV spectra of objects with 

fixed cis and trans geometry. The isoxazolidine ring is 

confirmed by UV absorption at 289 nm. The synthesis of the 

isoxazolidine ring system is indicated by the disappearance 

of the C=C (olefine) band at 1591.95 cm-1 and the C=N 

(nitrone) band at 1490.7 cm-1 in the FT-IR spectrum. 

 

 
 

Fig 1: UV-Visible spectra of the synthesized novel isoxazolidine 3 

 

 
 

Fig 2: FT-IR spectra of the synthesized novel isoxazolidine 3 
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Table 1: Synthesis of novel isoxazolidines using different 

dipolarophiles 2 
 

 
R Time(h) Yield 

a H 20 90% 

b 4-Cl 18 85% 

c 2-NO2 19 87% 

d 2-OH 18 86% 

e α-CH3 20 85% 

f α-OCH3 17 86% 

g 2-Br 16 85% 

h 4-OH, 3-OCH3 18 89% 

i 4-NO2 20 90% 

 

Here, the synthesised α-Glutaraldehyde-N-aryl nitrone (1) 

reacts with the substituted cinnamaldehydes (2, 2a-2h) to 

provide several kinds of isoxazolidine systems (3, 3a-3h). 

 

3 - (4 - oxobutyl)-2, 4 – diphenyl isoxazolidine – 5 -

carbaldehyde (3a) 
1H NMR: δ 1.51-1.65 (4H, 1.57 (quint, J = 7.5 Hz), 1.57 

(quint, J = 7.5 Hz), 1.59 (td, J = 7.4, 6.8 Hz), 1.59 (td, J = 

7.4, 6.8 Hz)), 2.46-2.60 (2H, 2.53 (td, J = 7.5, 6.9 Hz), 2.53 

(td, J = 7.5, 6.9 Hz)), 3.82 (1H, dd, J = 8.1, 6.9 Hz), 4.13 

(1H, dt, J = 8.1, 6.8 Hz), 5.17 (1H, dd, J = 6.9, 3.8 Hz), 6.95 

(1H, tt, J = 8.1, 1.2 Hz), 7.02-7.41 (9H, 7.08 (dtd, J = 8.2, 

1.2, 0.5 Hz), 7.19 (tt, J = 7.7, 1.6 Hz), 7.27 (tdd, J = 7.7, 1.9, 

0.5 Hz), 7.32 (dddd, J = 8.2, 8.1, 1.4, 0.5 Hz), 7.35 (dtd, J = 

7.6, 1.5, 0.5 Hz)), 9.60-9.77 (2H, 9.66 (t, J = 6.9 Hz), 9.71 

(d, J = 3.8 Hz)). 
13 C NMR: δ 26.2 (1C, s), 29.3 (1C, s), 40.7 (1C, s), 43.4 

(1C, s), 58.2 (1C, s), 73.9 (1C, s), 115.9 (2C, s), 127.6 (2C, 

s), 127.8-127.8 (2C, 127.8 (s), 127.8 (s)), 128.2 (2C, s), 

128.4 (2C, s), 139.2 (1C, s), 148.0 (1C, s), 201.5-201.7 (2C, 

201.6 (s), 201.6 (s)). 

 

4-(4-chlorophenyl)-3-(4-oxobutyl)-2-phenylisoxazolidine-

5-carbaldehyde (3b) 
1H NMR: δ 1.51-1.65 (4H, 1.57 (quint, J = 7.5 Hz), 1.57 

(quint, J = 7.5 Hz), 1.59 (td, J = 7.4, 5.7 Hz), 1.59 (td, J = 

7.4, 5.7 Hz)), 2.46-2.60 (2H, 2.53 (td, J = 7.5, 6.9 Hz), 2.53 

(td, J = 7.5, 6.9 Hz)), 3.84 (1H, dd, J = 8.1, 6.9 Hz), 4.13 

(1H, dt, J = 8.1, 5.7 Hz), 5.15 (1H, dd, J = 6.9, 3.8 Hz), 6.69 

(2H, ddd, J = 8.2, 1.5, 0.5 Hz), 6.95 (1H, tt, J = 8.1, 1.2 Hz), 

7.08 (2H, dtd, J = 8.2, 1.2, 0.5 Hz), 7.24-7.51 (4H, 7.32 

(dddd, J = 8.2, 8.1, 1.4, 0.5 Hz), 7.45 (ddd, J = 8.2, 1.4, 0.5 

Hz)), 9.60-9.77 (2H, 9.66 (t, J = 6.9 Hz), 9.71 (d, J = 3.8 

Hz)). 
13C NMR: δ 26.2 (1C, s), 29.3 (1C, s), 40.7 (1C, s), 43.4 

(1C, s), 58.2 (1C, s), 73.9 (1C, s), 115.9 (2C, s), 127.8 (1C, 

s), 128.0-128.3 (4C, 128.1 (s), 128.2 (s)), 128.7 (2C, s), 

133.7 (1C, s), 139.2 (1C, s), 148.0 (1C, s), 201.5-201.7 (2C, 

201.6 (s), 201.6 (s)). 

 

4-(2-nitrophenyl)-3-(4-oxobutyl)-2-phenylisoxazolidine-

5-carbaldehyde (3c) 
1H NMR: δ 1.51-1.74 (4H, 1.57 (quint, J = 7.5 Hz), 1.57 

(quint, J = 7.5 Hz), 1.67 (td, J = 7.4, 5.6 Hz), 1.67 (td, J = 

7.4, 5.6 Hz)), 2.46-2.60 (2H, 2.53 (td, J = 7.5, 6.9 Hz), 2.53 

(td, J = 7.5, 6.9 Hz)), 3.89 (1H, dd, J = 8.1, 6.9 Hz), 4.05 

(1H, dt, J = 8.1, 5.6 Hz), 5.11 (1H, dd, J = 6.9, 3.8 Hz), 6.95 

(1H, tt, J = 8.1, 1.2 Hz), 7.02-7.44 (8H, 7.08 (dtd, J = 8.2, 

1.2, 0.5 Hz), 7.20 (ddd, J = 8.2, 1.4, 0.5 Hz), 7.27 (ddd, J = 

8.0, 1.5, 0.5 Hz), 7.32 (dddd, J = 8.2, 8.1, 1.4, 0.5 Hz), 7.37

(ddd, J = 8.2, 7.4, 1.5 Hz), 7.37 (ddd, J = 8.0, 7.4, 1.4 Hz)), 

9.60-9.77 (2H, 9.66 (t, J = 6.9 Hz), 9.72 (d, J = 3.8 Hz)). 
13C NMR: δ 26.2 (1C, s), 29.3 (1C, s), 40.7 (1C, s), 43.4 

(1C, s), 58.2 (1C, s), 73.9 (1C, s), 114.8 (1C, s), 115.9 (2C, 

s), 124.1 (1C, s), 127.3 (1C, s), 127.8 (1C, s), 128.2 (2C, s), 

128.4 (1C, s), 129.4 (1C, s), 148.0 (1C, s), 154.1 (1C, s), 

201.5-201.7 (2C, 201.6 (s), 201.6 (s)). 

 

4-(2-hydroxyphenyl)-3-(4-oxobutyl)-2-

phenylisoxazolidine-5-carbaldehyde (3d) 
1H NMR: δ 1.51-1.70 (4H, 1.57 (quint, J = 7.5 Hz), 1.57 

(quint, J = 7.5 Hz), 1.63 (td, J = 7.4, 5.7 Hz), 1.63 (td, J = 

7.4, 5.7 Hz)), 2.46-2.60 (2H, 2.53 (td, J = 7.5, 6.9 Hz), 2.53 

(td, J = 7.5, 6.9 Hz)), 3.80-4.07 (2H, 3.87 (dd, J = 8.1, 6.9 

Hz), 4.00 (dt, J = 8.1, 5.7 Hz)), 5.13 (1H, dd, J = 6.9, 3.8 

Hz), 6.59 (1H, ddd, J = 8.3, 1.2, 0.5 Hz), 6.84-7.01 (2H, 

6.91 (ddd, J = 8.0, 7.5, 1.2 Hz), 6.95 (tt, J = 8.1, 1.2 Hz)), 

7.02-7.39 (6H, 7.08 (dtd, J = 8.2, 1.2, 0.5 Hz), 7.16 

(ddd, J = 8.0, 1.3, 0.5 Hz), 7.24 (ddd, J = 8.3, 7.5, 1.3 Hz), 

7.32 (dddd, J = 8.2, 8.1, 1.4, 0.5 Hz)), 9.60-9.77 (2H, 9.66 

(t, J = 6.9 Hz), 9.71 (d, J = 3.8 Hz)). 
13C NMR: δ 26.2 (1C, s), 29.3 (1C, s), 40.7 (1C, s), 43.4 

(1C, s), 58.2 (1C, s), 73.9 (1C, s), 115.9 (2C, s), 116.8 (1C, 

s), 124.1 (1C, s), 127.3 (1C, s), 127.8 (1C, s), 128.2 (2C, s), 

128.4 (1C, s), 129.4 (1C, s), 148.0 (1C, s), 155.9 (1C, s), 

201.5-201.7 (2C, 201.6 (s), 201.6 (s)). 

 

5-methyl-3-(4-oxobutyl)-2, 4-diphenyl isoxazolidine-5-

carbaldehyde (3e) 
1H NMR: δ 1.46-1.75 (7H, 1.51 (s), 1.57 (quint, J = 7.5 Hz), 

1.57 (quint, J = 7.5 Hz), 1.68 (td, J = 7.4, 5.6 Hz), 1.68 

(td, J = 7.4, 5.6 Hz)), 2.46-2.60 (2H, 2.53 (td, J = 7.5, 6.9 

Hz), 2.53 (td, J = 7.5, 6.9 Hz)), 3.78-3.94 (2H, 3.84 (d, J = 

7.1 Hz), 3.88 (dt, J = 7.1, 5.6 Hz)), 6.99-7.14 (3H, 7.05 

(tt, J = 8.1, 1.2 Hz), 7.08 (dtd, J = 8.2, 1.2, 0.5 Hz)), 7.15-

7.42 (7H, 7.21 (tt, J = 7.7, 1.6 Hz), 7.32 (dddd, J = 8.2, 8.1, 

1.4, 0.5 Hz), 7.35 (dtd, J = 7.6, 1.5, 0.5 Hz), 7.36 (tdd, J = 

7.7, 1.9, 0.5 Hz)), 9.60-9.76 (2H, 9.66 (t, J = 6.9 Hz), 9.71 

(s)). 
13C NMR: δ 26.2 (1C, s), 27.6 (1C, s), 29.3 (1C, s), 40.7 

(1C, s), 43.4 (1C, s), 58.2 (1C, s), 79.7 (1C, s), 115.9 (2C, 

s), 127.6 (2C, s), 127.8-127.8 (2C, 127.8 (s), 127.8 (s)), 

128.2 (2C, s), 128.4 (2C, s), 139.2 (1C, s), 148.0 (1C, s), 

201.6 (1C, s), 202.2 (1C, s). 

 

4-(2-methoxyphenyl)-3-(4-oxobutyl)-2-

phenylisoxazolidine-5-carbaldehyde (3f)  
1H NMR: δ 1.51-1.71 (4H, 1.57 (quint, J = 7.5 Hz), 1.57 

(quint, J = 7.5 Hz), 1.64 (td, J = 7.4, 5.6 Hz), 1.64 (td, J = 

7.4, 5.6 Hz)), 2.46-2.60 (2H, 2.53 (td, J = 7.5, 6.9 Hz), 2.53 

(td, J = 7.5, 6.9 Hz)), 3.75-4.10 (5H, 3.80 (s), 3.90 (dd, J = 

8.1, 6.9 Hz), 4.03 (dt, J = 8.1, 5.6 Hz)), 5.11 (1H, dd, J = 

6.9, 3.8 Hz), 6.84-7.14 (5H, 6.91 (ddd, J = 8.0, 7.5, 1.2 Hz), 

6.95 (tt, J = 8.1, 1.2 Hz), 7.02 (ddd, J = 8.3, 1.2, 0.5 Hz), 

7.08 (dtd, J = 8.2, 1.2, 0.5 Hz)), 7.14-7.39 (4H, 7.21 

(ddd, J = 8.0, 1.3, 0.5 Hz), 7.23 (ddd, J = 8.3, 7.5, 1.3 Hz), 

7.32 (dddd, J = 8.2, 8.1, 1.4, 0.5 Hz)), 9.60-9.77 (2H, 9.66 

(t, J = 6.9 Hz), 9.72 (d, J = 3.8 Hz)). 
13C NMR: δ 26.2 (1C, s), 29.3 (1C, s), 40.7 (1C, s), 43.4 

(1C, s), 56.0 (1C, s), 58.2 (1C, s), 73.9 (1C, s), 115.8 (1C, 

s), 115.9 (2C, s), 124.1 (1C, s), 127.3 (1C, s), 127.8 (1C, s), 

128.2 (2C, s), 128.4 (1C, s), 129.4 (1C, s), 148.0 (1C, s), 

157.0 (1C, s), 201.5-201.7 (2C, 201.6 (s), 201.6 (s)). 
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5-bromo-3-(4-oxobutyl)-2, 4-diphenyl isoxazolidine-5-

carbaldehyde (3g) 
1H NMR: δ 1.52-1.67 (4H, 1.58 (quint, J = 7.5 Hz), 1.58 

(quint, J = 7.5 Hz), 1.60 (td, J = 7.4, 5.5 Hz), 1.60 (td, J = 

7.4, 5.5 Hz)), 2.47-2.60 (2H, 2.53 (td, J = 7.5, 6.9 Hz), 2.53 

(td, J = 7.5, 6.9 Hz)), 3.87-4.11 (2H, 3.93 (dt, J = 7.1, 5.5 

Hz), 4.05 (d, J = 7.1 Hz)), 6.99-7.14 (3H, 7.05 (tt, J = 8.1, 

1.2 Hz), 7.08 (dtd, J = 8.2, 1.2, 0.5 Hz)), 7.18-7.45 (7H, 

7.24 (tt, J = 7.7, 1.8 Hz), 7.32 (dddd, J = 8.2, 8.1, 1.4, 0.5 

Hz), 7.32 (tdd, J = 7.7, 1.9, 0.5 Hz), 7.38 (dddd, J = 7.6, 1.8, 

1.6, 0.5 Hz)), 9.66 (1H, t, J = 6.9 Hz), 9.97 (1H, s). 
13C NMR: δ 26.2 (1C, s), 29.3 (1C, s), 40.7 (1C, s), 43.4 

(1C, s), 58.2 (1C, s), 89.2 (1C, s), 115.9 (2C, s), 127.6 (2C, 

s), 127.8-127.8 (2C, 127.8 (s), 127.8 (s)), 128.2 (2C, s), 

128.4 (2C, s), 139.2 (1C, s), 148.0 (1C, s), 190.9 (1C, s), 

201.6 (1C, s). 

 

4-(4-hydroxy-3-(methylperoxy) phenyl)-3-(4-oxobutyl)-2-

phenylisoxazolidine-5-carbaldehyde (3h) 
1H NMR: δ 1.51-1.65 (4H, 1.57 (quint, J = 7.5 Hz), 1.57 

(quint, J = 7.5 Hz), 1.59 (td, J = 7.4, 5.7 Hz), 1.59 (td, J = 

7.4, 5.7 Hz)), 2.46-2.60 (2H, 2.53 (td, J = 7.5, 6.9 Hz), 2.53 

(td, J = 7.5, 6.9 Hz)), 3.68-3.96 (5H, 3.73 (s), 3.77 (dd, J = 

8.1, 6.9 Hz), 3.90 (dt, J = 8.1, 5.7 Hz)), 5.10 (1H, dd, J = 

6.9, 3.8 Hz), 6.70-7.02 (4H, 6.76 (dd, J = 8.4, 0.5 Hz), 6.88 

(dd, J = 8.4, 2.7 Hz), 6.95 (tt, J = 8.1, 1.2 Hz), 6.96 (dd, J = 

2.7, 0.5 Hz)), 7.08 (2H, dtd, J = 8.2, 1.2, 0.5 Hz), 7.32 (2H, 

dddd, J = 8.2, 8.1, 1.4, 0.5 Hz), 9.60-9.77 (2H, 9.66 (t, J = 

6.9 Hz), 9.71 (d, J = 3.8 Hz)). 
13C NMR: δ 26.2 (1C, s), 29.3 (1C, s), 40.7 (1C, s), 43.4 

(1C, s), 55.7 (1C, s), 58.2 (1C, s), 73.9 (1C, s), 110.6 (1C, 

s), 115.8 (1C, s), 115.9 (2C, s), 127.8 (1C, s), 128.2 (2C, s), 

128.7 (1C, s), 139.2 (1C, s), 146.1 (1C, s), 148.0 (1C, s), 

153.2 (1C, s), 201.5-201.7 (2C, 201.6 (s), 201.6 (s)). 

 

4-(4-nitrophenyl)-3-(4-oxobutyl)-2-phenylisoxazolidine-

5-carbaldehyde (3i) 
1H NMR: δ 1.51-1.65 (4H, 1.57 (quint, J = 7.5 Hz), 1.57 

(quint, J = 7.5 Hz), 1.59 (td, J = 7.4, 5.7 Hz), 1.59 (td, J = 

7.4, 5.7 Hz)), 2.46-2.60 (2H, 2.53 (td, J = 7.5, 6.9 Hz), 2.53 

(td, J = 7.5, 6.9 Hz)), 3.75 (1H, dd, J = 8.1, 6.9 Hz), 3.95 

(1H, dt, J = 8.1, 5.7 Hz), 5.11 (1H, dd, J = 6.9, 3.8 Hz), 6.95 

(1H, tt, J = 8.1, 1.2 Hz), 7.08 (2H, dtd, J = 8.2, 1.2, 0.5 Hz), 

7.14-7.39 (6H, 7.21 (ddd, J = 8.2, 1.3, 0.5 Hz), 7.26 

(ddd, J = 8.2, 1.3, 0.5 Hz), 7.32 (dddd, J = 8.2, 8.1, 1.4, 0.5 

Hz)), 9.60-9.77 (2H, 9.66 (t, J = 6.9 Hz), 9.71 (d, J = 3.8 

Hz)). 
13C NMR: δ 26.2 (1C, s), 29.3 (1C, s), 40.7 (1C, s), 43.4 

(1C, s), 58.2 (1C, s), 73.9 (1C, s), 114.8 (2C, s), 115.9 (2C, 

s), 127.8 (1C, s), 128.2 (2C, s), 128.7 (2C, s), 139.2 (1C, s), 

148.0 (1C, s), 164.6 (1C, s), 201.5-201.7 (2C, 201.6 (s), 

201.6 (s)). 

 

Antibacterial activity 

In this study, antibacterial activity is examined using the 

disc diffusion technique. The method involves covering a 

yard of bacteria grown on the outer layer of an agar medium 

with circles of paper soaked in an antimicrobial solution. 

The plate is then temporarily hatched, and the presence or 

absence of an inhibitory zone around the circles is noted. 

Isoxazolidines have been shown to have antibacterial 

activity [27, 28]. This led to the performance of an 

antibacterial susceptibility test using Bacillus Marisflavi, 

Pseudomonas aeruginosa, and Exiguobacterium indicum 

using synthesized isoxazolidine 3 in the inhibitory zone 

diameter at a concentration of 20 mg/ml of DMSO. Two 

different microbes cannot grow when compound 3 is 

present. It destroys Bacillus Marisflavi and Pseudomonas 

aeruginosa. (Table 2, Figure 3). 

  
 

Fig 3: Depicts the antibacterial activity against Bacillus Marisflavi and Pseudomonas aeruginosa

  
Table 2: Concentration 20mg/ml of DMSO 

 

Organisms Compound 3 

Bacillus Marisflavi 13 mm 

Pseudomonas aeruginosa 14 mm 

Exiguobacterium indicum - 

 

Conclusion 
Using α-Glutaraldehyde-N-aryl-nitrone and various 
substituted Cinnamaldehyde as dipolarophiles are refluxed 

in conventional and with microwave irradiation methods. 
The new isoxazolidines are synthesized with good yield. 
And it has been characterized with the help of UV, FT-IR, 
[1] H and [13] C NMR techniques. All of the above-mentioned 
heterocyclic compounds have, therefore, been effectively 
and efficiently synthesized. 
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