Journal of Research in Chemistry 2025; 6(1): 223-226

E-ISSN: 2709-9423 **P-ISSN:** 2709-9415 JRC 2025; 6(1): 223-226 © 2025 JRC

www.chemistryjournal.net

Received: 22-04-2025 Accepted: 28-05-2025

Dr. Sara Al- Farsi Department of Food Science, Oman Agricultural College, Muscat, Oman

Sweet potato (*Ipomoea batatas*) as a source of functional ingredients: Chemical composition and health benefits

Sara Al- Farsi

Abstract

Sweet potato (*Ipomoea batatas*) is a highly nutritious root vegetable that has gained attention not only for its culinary versatility but also for its numerous bioactive compounds. This paper explores the chemical composition of sweet potato, focusing on its functional ingredients and the associated health benefits. The chemical profile of sweet potato includes essential nutrients, vitamins, minerals, and bioactive compounds such as carotenoids, polyphenols, and dietary fiber. These components have been linked to various health-promoting properties, including antioxidant, anti-inflammatory, and anticancer effects. By analyzing the chemical composition and exploring the health benefits of sweet potato, this paper aims to underscore its potential as a functional food that supports disease prevention and management, especially in metabolic and chronic diseases.

Keywords: *Ipomoea batatas*, functional ingredients, bioactive compounds, carotenoids, polyphenols, dietary fiber, antioxidant activity, anti-inflammatory, anticancer, functional food, metabolic disorders, chronic disease prevention

Introduction

Sweet potato (*Ipomoea batatas*) is a versatile and nutrient-dense root vegetable that is widely consumed across the world. It has long been a staple food due to its rich content of carbohydrates, vitamins, and minerals. However, recent research has also highlighted the importance of its bioactive compounds, such as polyphenols, carotenoids, and dietary fiber, which contribute to its health benefits. The increased awareness about functional foods, which promote health beyond basic nutrition, has sparked interest in sweet potato's potential role in disease prevention, particularly in relation to metabolic disorders, cardiovascular health, and cancer. This paper delves into the chemical composition of sweet potato, its bioactive compounds, and the health benefits they confer.

Main Objectives

- 1. To analyze the chemical composition of sweet potato, focusing on its macronutrients, micronutrients, and bioactive compounds.
- 2. To evaluate the health benefits associated with the consumption of sweet potato, particularly in terms of its antioxidant, anti-inflammatory, and anticancer properties.
- 3. To explore the role of sweet potato as a functional food and its potential applications in disease prevention and management.

Chemical Composition of Sweet Potato

The chemical composition of sweet potato varies depending on the variety, cultivation conditions, and preparation methods. However, the key nutrients and bioactive compounds present in sweet potato remain consistent across different cultivars. These components contribute significantly to its nutritional value and health benefits.

Correspondence
Dr. Sara Al- Farsi
Department of Food Science,
Oman Agricultural College,
Muscat, Oman

Component	Content (per 100g)
Water	77.3 g
Calories	86 kcal
Carbohydrates	20.1 g
Dietary Fiber	3.0 g
Sugars	4.2 g
Protein	1.6 g
Fat	0.1 g
Vitamins	
Vitamin A (as Beta-Carotene)	961 μg (32% DV)
Vitamin C	2.4 mg (3% DV)
Vitamin B6	0.3 mg (15% DV)
Folate	11 μg (3% DV)
Minerals	
Potassium	337 mg (10% DV)
Magnesium	25 mg (6% DV)
Calcium	30 mg (3% DV)
Phosphorus	47 mg (7% DV)
Bioactive Compounds	
Beta-Carotene	0.33 mg
Anthocyanins (in purple varieties)	42-72 mg
Chlorogenic Acid	12.5 mg
Caffeic Acid	7.5 mg
Other Compounds	
Starch	17.5 g
Fatty Acids	
Linoleic Acid (Omega-6)	0.07 g
Alpha-Linolenic Acid (Omega-3)	0.03 g

Literature Review

Sweet potato is a rich source of nutrients, and its health-promoting properties have been extensively studied. Several studies have focused on the bioactive compounds in sweet potato, particularly those that have antioxidant, anti-inflammatory, and anticancer effects.

The antioxidant capacity of sweet potato has been well-documented, particularly due to its high content of carotenoids and polyphenols. Beta-carotene, a prominent carotenoid, is a potent antioxidant that helps in reducing oxidative stress and preventing cellular damage. Studies have shown that sweet potato can scavenge free radicals, reducing the risk of chronic diseases such as heart disease, diabetes, and cancer (Kruger & Aiken, 2020) [1].

The polyphenolic compounds in sweet potato, including chlorogenic acid, contribute to its anti-inflammatory properties. Inflammation is a critical factor in the development of many chronic diseases, including arthritis and cardiovascular disease. Sweet potato's ability to modulate inflammation through its bioactive compounds has been highlighted in numerous studies (Jann & Cooke, 2021)

Carotenoids and polyphenols in sweet potato have been shown to inhibit cancer cell growth by modulating signaling pathways associated with cell proliferation, apoptosis, and metastasis. Several studies have explored the anticancer properties of sweet potato, suggesting its potential as part of a cancer-preventive diet (Ma & Wang, 2019) [4].

The consumption of sweet potato has been associated with improved blood glucose regulation. The low glycemic index of sweet potato makes it an excellent choice for individuals with diabetes, as it helps in stabilizing blood sugar levels. Anthocyanins, particularly in purple-fleshed varieties, have been shown to improve insulin sensitivity and reduce the risk of type 2 diabetes (Zhao *et al.*, 2018) ^[5].

Hypothesis

We hypothesize that the chemical composition of sweet potato, particularly its carotenoids, polyphenols, and dietary fiber, contributes significantly to its health benefits, including antioxidant, anti-inflammatory, anticancer, and metabolic effects. Specifically, we expect that regular consumption of sweet potato may play a role in reducing the risk of chronic diseases such as diabetes, cardiovascular disease, and cancer, due to its bioactive compounds.

Health Benefits of Sweet Potato (Ipomoea batatas)

Sweet potato (*Ipomoea batatas*) has gained significant attention as a functional food due to its rich nutritional and bioactive composition. Its health benefits extend beyond basic nourishment, primarily due to the presence of bioactive compounds, such as carotenoids, polyphenols, and dietary fiber, which contribute to its antioxidant, anti-inflammatory, and metabolic effects. These compounds not only promote general well-being but also play a role in the prevention and management of various chronic diseases, making sweet potato a valuable addition to a health-conscious diet.

Antioxidant Properties and Cellular Protection

One of the primary health benefits of sweet potato lies in its antioxidant properties, which are attributed to its high content of carotenoids, particularly beta-carotene, as well as polyphenolic compounds. These antioxidants neutralize free radicals—unstable molecules that can cause oxidative damage to cells, proteins, and DNA, leading to the development of chronic diseases such as cardiovascular disease, cancer, and neurodegenerative conditions.

Beta-carotene, the most abundant carotenoid in sweet potato, is a precursor to vitamin A and possesses potent antioxidant activity. It scavenges free radicals and helps protect cells from oxidative stress, which is a major

contributing factor to aging and the onset of diseases. The protective effect of beta-carotene extends to the eyes, where it helps prevent macular degeneration and other vision-related disorders. Additionally, the polyphenols in sweet potato, such as chlorogenic acid, further enhance its antioxidant capacity. These compounds inhibit the oxidation of lipids and prevent damage to cell membranes, thereby reducing the risk of conditions like atherosclerosis and other cardiovascular diseases.

Anti-inflammatory Effects

Chronic inflammation is a key factor in the pathogenesis of various diseases, including diabetes, arthritis, and cardiovascular disorders. Sweet potato's bioactive compounds, particularly its polyphenols and anthocyanins, play a vital role in modulating inflammatory pathways. The anti-inflammatory effects of sweet potato are mediated through its ability to reduce the production of proinflammatory cytokines and enzymes cyclooxygenase-2 (COX-2) and lipoxygenase (LOX).

The presence of anthocyanins, especially in purple-fleshed varieties, has been shown to significantly reduce the expression of inflammatory markers. These compounds inhibit the activation of nuclear factor kappa B (NF-κB), a transcription factor involved in the regulation of inflammation. By modulating these pathways, sweet potato helps alleviate symptoms of chronic inflammatory conditions like rheumatoid arthritis and inflammatory bowel disease. Moreover, regular consumption of sweet potato may help reduce the risk of cardiovascular disease, as it prevents the chronic inflammation that often leads to atherosclerosis and plaque buildup in blood vessels.

Blood Sugar Regulation and Diabetes Management

Sweet potato is an excellent food for individuals with diabetes due to its low glycemic index and high fiber content. The low glycemic index indicates that sweet potato releases glucose slowly into the bloodstream, preventing sharp spikes in blood sugar levels. This slow release is particularly beneficial for individuals with type 2 diabetes, as it helps maintain stable blood glucose levels throughout the day.

The dietary fiber in sweet potato, including both soluble and insoluble fibers, also contributes to its ability to regulate blood sugar. Soluble fiber forms a gel-like substance in the gut, slowing down the absorption of glucose and improving insulin sensitivity. In particular, the purple-fleshed varieties of sweet potato, which are rich in anthocyanins, have been shown to improve insulin resistance and glucose metabolism. These compounds help enhance the body's response to insulin, making sweet potato an effective food for managing blood sugar levels in people with diabetes.

Additionally, the antioxidants present in sweet potato further support diabetes management by protecting the insulin-producing beta cells in the pancreas from oxidative damage. Studies have shown that sweet potato consumption can reduce the levels of oxidative stress markers in diabetic individuals, improving overall metabolic health.

Cancer Prevention and Anticancer Effects

Cancer is one of the leading causes of death worldwide, and the ability to prevent or slow down its progression is of great interest in nutrition and health research. Sweet potato's high content of antioxidants, particularly beta-carotene, has been linked to its potential anticancer properties. Betacarotene, through its antioxidant activity, helps prevent the formation of free radicals that can damage DNA and initiate cancerous transformations in cells.

Moreover, sweet potato's polyphenols have been shown to inhibit the growth and proliferation of cancer cells by modulating various molecular pathways. These polyphenolic compounds have been demonstrated to suppress the activation of oncogenes and reduce the expression of pro-cancer proteins, such as matrix metalloproteinases (MMPs), which are involved in tumor invasion and metastasis. Sweet potato's anticancer effects extend to various types of cancer, including lung, colon, and breast cancers, with studies indicating that sweet potato consumption can reduce the size and number of tumors.

The high fiber content of sweet potato also plays a role in cancer prevention, particularly in colorectal cancer. Fiber helps promote regular bowel movements, reducing the time that potentially harmful substances remain in the colon. Additionally, fiber fermentation by gut microbiota produces short-chain fatty acids (SCFAs), which are known to have protective effects on the colon by lowering the pH and preventing the growth of cancerous cells.

Cardiovascular Health

Sweet potato has a beneficial effect on heart health, primarily due to its rich content of potassium, fiber, and antioxidants. Potassium plays a critical role in regulating blood pressure by balancing the effects of sodium in the body. Consuming potassium-rich foods like sweet potato helps lower the risk of hypertension, a major risk factor for heart disease and stroke.

The antioxidants in sweet potato also contribute to cardiovascular health by reducing oxidative stress and inflammation in the blood vessels. By preventing the oxidation of low-density lipoprotein (LDL) cholesterol, sweet potato helps reduce the risk of plaque buildup in arteries, thus preventing atherosclerosis. Furthermore, the fiber content in sweet potato aids in lowering total cholesterol and improving lipid profiles, further reducing the risk of cardiovascular diseases.

Digestive Health

Sweet potato is an excellent source of dietary fiber, which plays a significant role in promoting digestive health. The insoluble fiber in sweet potato adds bulk to stool and aids in regular bowel movements, preventing constipation. On the other hand, soluble fiber helps manage the consistency of stool and reduces the risk of gastrointestinal discomfort. The prebiotic effect of sweet potato's fiber also supports a healthy gut microbiota, promoting the growth of beneficial bacteria that contribute to overall gut health.

Research has shown that the consumption of fiber-rich foods like sweet potato can reduce the risk of colon cancer, improve gut motility, and alleviate symptoms of irritable bowel syndrome (IBS). Additionally, the antioxidants in sweet potato may help reduce inflammation in the gut, further supporting its role in digestive health.

Skin Health and Anti-aging

The high content of beta-carotene in sweet potato contributes to skin health by promoting healthy cell turnover and reducing the appearance of wrinkles. As an antioxidant, beta-carotene helps protect the skin from oxidative damage

caused by UV radiation and environmental pollutants. Regular consumption of sweet potato may help slow down the aging process by preventing premature aging signs such as fine lines, dark spots, and wrinkles.

Moreover, vitamin A derived from beta-carotene is essential for maintaining the health of the skin's outer layers, aiding in the repair of damaged skin cells and promoting collagen production. This makes sweet potato an important food for maintaining youthful, glowing skin.

Conclusion

Sweet potato (*Ipomoea batatas*) is a nutrient-dense food that offers numerous health benefits due to its rich chemical composition, which includes carbohydrates, vitamins, minerals, polyphenols, carotenoids, and dietary fiber. The bioactive compounds in sweet potato, such as carotenoids, flavonoids, and polyphenols, contribute to its antioxidant, anti-inflammatory, and anticancer properties. Furthermore, sweet potato's ability to regulate blood glucose levels, support cardiovascular health, and reduce inflammation makes it an excellent functional food for the prevention and management of chronic diseases. Continued research into the molecular mechanisms underlying the health benefits of sweet potato is essential for fully understanding its role in human health and its potential as a key functional food.

References

- 1. Kruger M, Aiken R. Polyphenols in sweet potato (*Ipomoea batatas*) and their health benefits. J Agric Food Chem. 2020;68(3):611-620.
- 2. Jann CS, Cooke LC. Nutritional content and health benefits of sweet potatoes. Food Chem. 2021:339:127981.
- 3. Shaik Minhaj K, Anil B, Neeti Harshitha M. Preparation and quality evaluation of sweet potato (*Ipomoea batatas*) flour biscuits. Int J Agric Food Sci. 2023;5(2):20-24.
- 4. Ma Q, Wang R. The role of anthocyanins in the health benefits of purple sweet potatoes. Food Res Int. 2019;119:234-244.
- 5. Zhao D, Zhang L, Liu M. Effect of purple sweet potato (*Ipomoea batatas*) on insulin sensitivity and metabolic health. Nutr J. 2018;17(3):132-139.