

E-ISSN: 2709-9423
P-ISSN: 2709-9415
Impact Factor (RJIF): 5.29
JRC 2026; 7(1): 31-35
© 2026 JRC
www.chemistryjournal.net
Received: 24-11-2025
Accepted: 27-12-2025

LakshmanaRao G
Department of Chemistry, Dr.
V. S. Krishna Govt. Degree
College(A), Visakhapatnam.
Andhra Pradesh, India

Suresh P
Department of Chemistry,
SRR & CVR Govt. Degree
College (A), Vijayawada,
Andhra Pradesh, India

Malyaadri M
Department of Chemistry,
SRR & CVR Govt. Degree
College (A), Vijayawada,
Andhra Pradesh, India

Janaki NL
Department of Chemistry,
SRR & CVR Govt. Degree
College (A), Vijayawada,
Andhra Pradesh, India

Correspondence
Suresh P
Department of Chemistry,
SRR & CVR Govt. Degree
College (A), Vijayawada,
Andhra Pradesh, India

Temperature-Dependent Ultrasonic and Thermoacoustic Analysis of Ethyl Benzoate and 2-Methyl-2-Propanol Binary System

LakshmanaRao G, Suresh P, Malyaadri M and Janaki NL

DOI: <https://www.doi.org/10.22271/reschem.2026.v7.i1a.247>

Abstract

This study presents a comprehensive ultrasonic and thermo-acoustic investigation of binary liquid mixtures of ethylbenzoate and 2-methyl-2-propanol over the entire composition range at temperatures 303.15, 308.15, 313.15, and 318.15 K. Experimental measurements of ultrasonic velocity, density, and viscosity were used to evaluate derived parameters such as adiabatic compressibility, molar volume, acoustic impedance, intermolecular free length, internal pressure, and enthalpy. The variation of these parameters with mole fraction and temperature reveals significant non-ideal behavior, indicating strong molecular interactions between the ester and tertiary alcohol molecules. The decrease in compressibility and free length with increasing ethylbenzoate concentration suggests enhanced molecular association and compact molecular packing, while the increase in acoustic impedance and internal pressure supports stronger cohesive forces. Temperature-dependent trends indicate weakening of interactions at elevated temperatures due to increased thermal agitation. The study demonstrates the effectiveness of ultrasonic techniques in elucidating molecular interactions and structural rearrangements in binary liquid mixtures.

Keywords: Ultrasonic velocity, Binary liquid mixtures, Adiabatic compressibility, Intermolecular interactions, Acoustic impedance, Internal pressure

1. Introduction

Ultrasonic techniques have proven to be powerful tools for investigating molecular interactions and structural properties in liquids and liquid mixtures. Since the early pioneering studies on ultrasonic propagation in liquids [1, 2], extensive research has demonstrated that ultrasonic velocity, density, and viscosity measurements can provide valuable insight into intermolecular forces and thermodynamic behavior [3, 4]. Derived acoustic parameters such as adiabatic compressibility, free length, and internal pressure are highly sensitive to molecular association and packing effects in liquid systems [5, 6].

Binary liquid mixtures consisting of polar and non-polar or associating components often exhibit non-ideal behavior due to hydrogen bonding, dipole-dipole interactions, and steric effects [7-9]. Ester-alcohol systems are of particular interest because esters act as proton acceptors while alcohols act as proton donors, leading to complex molecular interactions [10, 11]. Ultrasonic investigations of such systems have been widely reported to analyze molecular interactions through excess and deviation properties [12-14].

Earlier theoretical frameworks developed by Eyring and co-workers laid the foundation for interpreting transport and acoustic properties in liquids [2, 3]. Subsequent studies expanded these concepts to binary and ternary liquid mixtures, demonstrating the sensitivity of ultrasonic parameters to temperature and composition [15, 16]. Recent studies continue to emphasize the relevance of ultrasonic techniques for understanding molecular structure in complex fluids [17-20].

Ethylbenzoate is an aromatic ester with moderate polarity, while 2-methyl-2-propanol is a tertiary alcohol characterized by steric hindrance and limited hydrogen-bonding capability. Their mixtures are expected to exhibit interesting interaction effects due to polarity differences and molecular size mismatch. Although several ester-alcohol systems have been studied [9, 11], ultrasonic investigations of ethylbenzoate with tertiary alcohols remain limited. Therefore, the present study aims to examine ultrasonic and thermo-acoustic

properties of ethylbenzoate + 2-methyl-2-propanol mixtures over a wide temperature range, providing deeper insight into molecular interactions and non-ideal mixing behavior.

2. Experimental and Theoretical Background

2.1 Materials

Ethyl benzoate and 2-methyl-1-propanol of analytical reagent grade were used without further purification. The purity of the liquids was confirmed by comparing measured densities and viscosities of the pure components with literature values.

2.2 Preparation of Mixtures

Binary mixtures were prepared by weighing appropriate amounts of the pure components using an electronic balance with an accuracy of ± 0.1 mg. The mole fractions were calculated from the measured masses and molar masses of the components. The uncertainty in mole fraction was estimated to be less than ± 0.0001 .

2.3 Measurements:

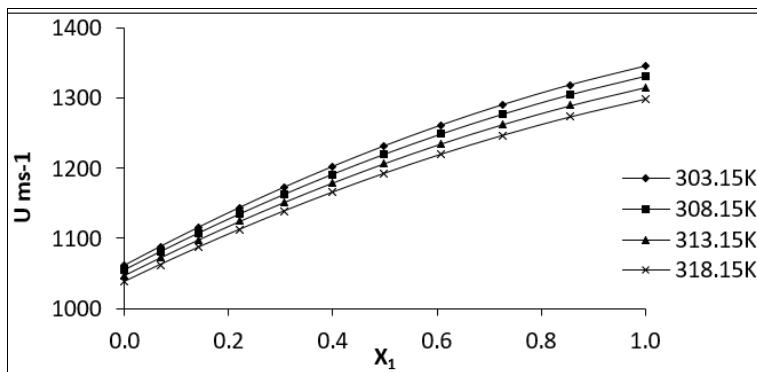
Ultrasonic velocity was measured using a single-crystal ultrasonic interferometer operating at a fixed

frequency. Density measurements were carried out using a calibrated pycnometer, while viscosity was determined with an Ostwald viscometer. All measurements were performed at temperatures 303.15, 308.15, 313.15 and 318.15 K, maintained constant within ± 0.01 K using a thermostatic water bath. The adiabatic compressibility (β_{ad}) was calculated using the Newton-Laplace equation [5], while intermolecular free length (L_f) was obtained using Jacobson's relation [6]. Acoustic impedance (Z) was determined as $Z = \rho U$, and internal pressure (π) was evaluated using Eyring's theory of liquids [2, 21]. These relations have been extensively validated in earlier ultrasonic studies of binary mixtures [12, 15, 22].

3. Results and Discussion

The experimental values of ultrasonic velocity, density, viscosity and the derived acoustical parameters for the binary mixture ethyl benzoate + 2-methyl-2-propanol at temperatures 303.15, 308.15, 313.15 and 318.15 K are presented in Table 1. The variation of these parameters with mole fraction and temperature provides clear insight into the nature of molecular interactions in the system.

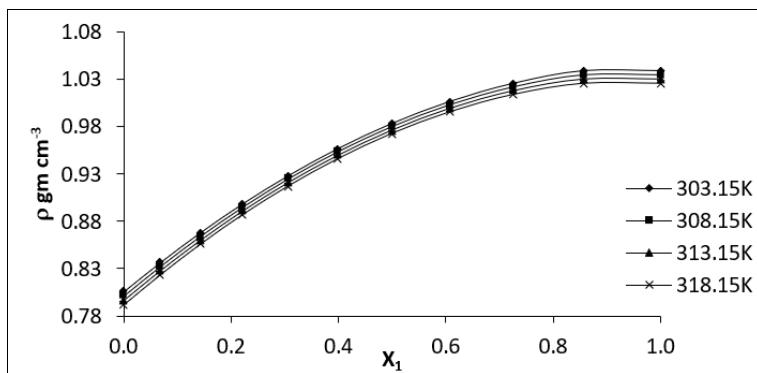
Table 1: Ethylbenzoate(X1) + 2-methyl-2-propanol(X2) Ultrasonic velocities, Densities, Viscosities and related Acoustic Parameters

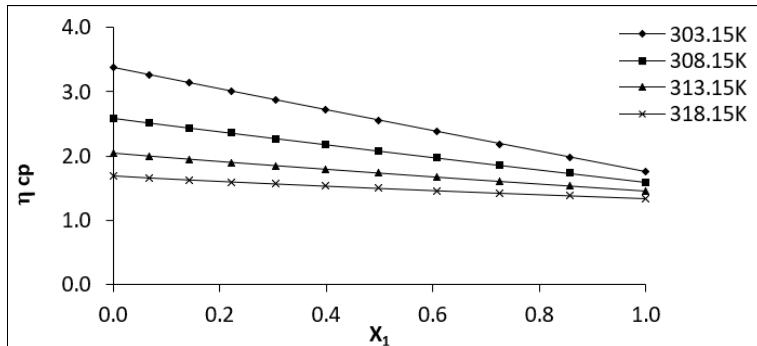

Mole fraction X ₁	Velocity (U) m/s	Density (ρ) $\times 10^3$ gm/cm ³	Viscosity (η) cP	Mol. Vol. V cm ³ mol ⁻¹	Ad. Comp. $\beta_{ad} \times 10^{-12}$ m ² N ⁻¹	Int Mol. Free Length L_f (Å)	internal pressure π N m ⁻²	Acoustic impedance (Z) Kg m ⁻² s ⁻¹	Enthalpy H J mol ⁻¹
303.15K									
0.0000	1061.0	775.30	3.3720	95.6017	14.5198	0.7562	10.50	822.59	1003.72
0.0685	1087.8	806.20	3.2580	98.3969	14.6776	0.7603	9.66	876.98	950.95
0.1419	1115.4	837.10	3.1360	101.4373	14.8622	0.7651	8.87	933.70	899.62
0.2209	1143.7	868.10	3.0060	104.7339	15.0680	0.7704	8.11	992.85	849.60
0.3061	1172.6	898.70	2.8670	108.3744	15.2998	0.7763	7.39	1053.82	800.79
0.3982	1202.0	928.40	2.7170	112.4518	15.5623	0.7829	6.70	1115.94	752.90
0.4981	1231.7	956.90	2.5550	117.0439	15.8542	0.7902	6.03	1178.61	705.71
0.6069	1261.4	983.30	2.3790	122.3151	16.1815	0.7983	5.39	1240.33	658.95
0.7258	1290.8	1006.70	2.1890	128.4527	16.5508	0.8074	4.77	1299.45	612.53
0.8562	1319.3	1025.00	1.9810	135.7191	16.9661	0.8175	4.17	1353.47	565.74
1.0000	1346.2	1039.20	1.7510	144.5054	17.4389	0.8288	3.58	1398.97	517.72
308.15K									
0.0000	1055.7	770.10	2.5890	96.2472	14.4722	0.7550	9.18	812.99	883.68
0.0685	1081.5	801.40	2.5150	98.9862	14.5950	0.7582	8.48	866.71	839.61
0.1419	1108.1	832.70	2.4390	101.9733	14.7458	0.7621	7.82	922.71	797.38
0.2209	1135.3	864.00	2.3590	105.2309	14.9179	0.7665	7.19	980.90	756.60
0.3061	1163.2	894.90	2.2730	108.8346	15.1194	0.7717	6.59	1040.95	716.91
0.3982	1191.6	924.90	2.1810	112.8774	15.3520	0.7776	6.01	1102.11	678.35
0.4981	1220.3	953.50	2.0810	117.4613	15.6175	0.7843	5.45	1163.56	640.62
0.6069	1249.1	979.90	1.9740	122.7395	15.9226	0.7919	4.92	1223.99	603.89
0.7258	1277.6	1003.20	1.8590	128.9008	16.2706	0.8005	4.41	1281.69	568.04
0.8562	1305.5	1022.10	1.7340	136.2236	16.6748	0.8104	3.91	1334.35	532.75
1.0000	1331.9	1034.80	1.5960	145.1198	17.1430	0.8217	3.43	1378.25	497.63
313.15K									
0.0000	1047.6	764.80	2.0460	96.9142	14.3497	0.7518	8.29	801.20	803.24
0.0685	1072.6	796.40	1.9990	99.6077	14.4459	0.7543	7.68	854.22	765.43
0.1419	1098.3	828.10	1.9520	102.5397	14.5666	0.7575	7.11	909.50	729.49
0.2209	1124.7	859.70	1.9020	105.7573	14.7139	0.7613	6.57	966.90	694.80
0.3061	1151.7	890.90	1.8500	109.3232	14.8885	0.7658	6.05	1026.05	661.53
0.3982	1179.2	921.10	1.7950	113.3430	15.0962	0.7711	5.55	1086.16	629.53
0.4981	1207.1	949.80	1.7360	117.9189	15.3410	0.7773	5.08	1146.50	598.62
0.6069	1235.2	976.30	1.6720	123.1921	15.6276	0.7846	4.62	1205.93	568.67
0.7258	1263.0	999.60	1.6050	129.3651	15.9581	0.7928	4.18	1262.49	540.11
0.8562	1290.1	1018.30	1.5340	136.7320	16.3445	0.8023	3.75	1313.71	512.88
1.0000	1316.0	1030.60	1.4550	145.7112	16.8043	0.8136	3.34	1356.27	486.41
318.15K									
0.0000	1038.1	760.00	1.6890	97.5263	14.1796	0.7473	7.65	788.96	746.41
0.0685	1062.3	792.00	1.6570	100.1610	14.2485	0.7491	7.12	841.34	712.75
0.1419	1087.1	823.90	1.6270	103.0624	14.3438	0.7516	6.61	895.66	681.26
0.2209	1112.7	855.80	1.5970	106.2392	14.4672	0.7549	6.13	952.25	651.29
0.3061	1138.9	887.20	1.5660	109.7792	14.6201	0.7588	5.67	1010.43	622.68
0.3982	1165.6	917.50	1.5330	113.7878	14.8079	0.7637	5.23	1069.44	595.28
0.4981	1192.7	946.30	1.4990	118.3550	15.0326	0.7695	4.81	1128.65	569.24

0.6069	1220.0	972.80	1.4630	123.6353	15.3002	0.7763	4.40	1186.82	544.44
0.7258	1247.1	995.90	1.4250	129.8457	15.6166	0.7843	4.01	1241.99	520.98
0.8562	1273.6	1014.30	1.3860	137.2712	15.9919	0.7936	3.64	1291.81	499.15
1.0000	1299.0	1026.00	1.3430	146.3645	16.4464	0.8048	3.27	1332.77	478.59

3.1 Ultrasonic Velocity, Density, and Viscosity

The experimental results show that ultrasonic velocity increases monotonically with increasing mole fraction of ethylbenzoate at all temperatures. Similar behavior has been


reported for several binary liquid mixtures involving esters and alcohols [9, 13, 18]. The increase in U indicates enhanced rigidity of the medium due to stronger intermolecular attractions.


Fig 1: Variation of ultrasonic velocity with mole fraction of EB for the system EB + 2-methyl-2-propanol

Density also increases with ethylbenzoate concentration, reflecting increased molecular mass and compact packing [14, 23]. Conversely, viscosity decreases with increasing

ethylbenzoate mole fraction and increasing temperature, indicating reduced resistance to flow due to weakening of hydrogen bonding in the tertiary alcohol component [7, 11].

Fig 2: Variation of density with mole fraction of EB for the system EB + 2-methyl-2-propanol

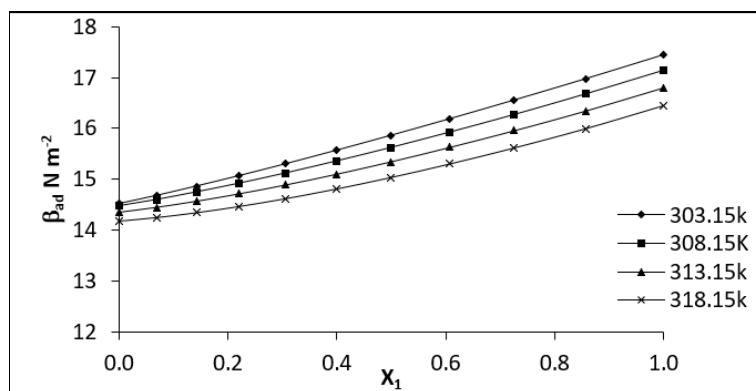
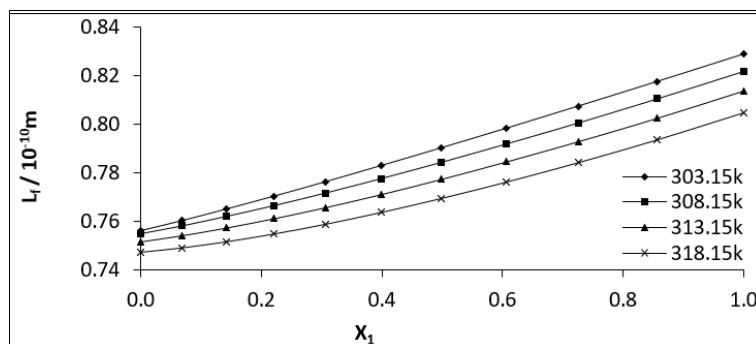


Fig 3: Variation of viscosity with mole fraction of EB for the system EB + 2-methyl-2-propanol


3.2 Adiabatic Compressibility and Free Length

Adiabatic compressibility decreases with increasing ethylbenzoate concentration, suggesting strong molecular association and reduced compressibility of the medium [6, 12].

The corresponding decrease in intermolecular free length supports the formation of a more closely packed molecular structure [8, 16]. These trends confirm the presence of significant solute-solvent interactions in the system.

Fig 4: Variation of adiabatic compressibility with mole fraction of EB for the system EB + 2-methyl-2-propanol

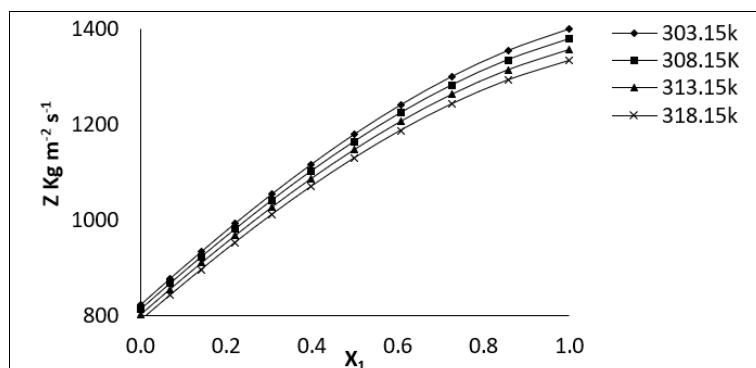
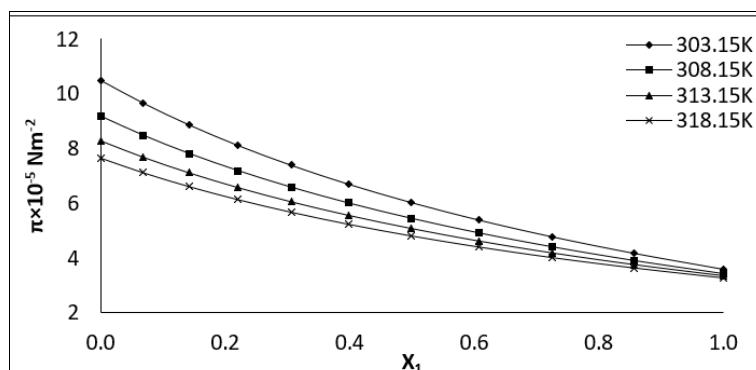


Fig 5: Variation of free length with mole fraction of EB for the system EB + 2-methyl-2-propanol


3.3 Acoustic Impedance and Internal Pressure

Acoustic impedance increases with mole fraction of ethylbenzoate due to simultaneous increases in density and ultrasonic velocity [19, 24]. Internal pressure values increase

with composition but decrease with temperature, indicating that cohesive forces dominate at lower temperatures while thermal agitation weakens interactions at higher temperatures [2, 21, 25].

Fig 6: Variation of acoustic impedance with mole fraction of EB for the system EB + 2-methyl-2-propanol

Fig 7: Variation of internal pressure with mole fraction of EB for the system EB + 2-methyl-2-propanol

3.4 Temperature Effects and Non-Ideal Behavior

Temperature elevation leads to a decrease in viscosity,

internal pressure, and acoustic impedance, consistent with earlier reports on binary and ternary mixtures [15, 26]. The

observed nonlinear variation of thermo-acoustic parameters with composition indicates non-ideal mixing behavior, attributed to specific molecular interactions between ester and alcohol molecules [9, 14, 27].

Recent studies further support these interpretations, emphasizing the role of ultrasonic parameters in identifying molecular interactions and excess thermodynamic properties in liquid mixtures [17, 18, 20, 28, 29]. The present results are in excellent agreement with both classical and contemporary literature.

4. Conclusion

The ultrasonic and thermo-acoustic investigation of ethylbenzoate + 2-methyl-2-propanol mixtures reveals strong molecular interactions and significant non-ideal behavior across the entire composition and temperature range studied. Decreasing compressibility and free length with increasing ester concentration indicate enhanced molecular association, while temperature-dependent trends confirm the weakening of interactions at elevated temperatures. The study reaffirms ultrasonic techniques as reliable tools for probing molecular interactions in complex liquid mixtures, contributing valuable data to the existing literature.

References

1. Parthasarathy S. Ultrasonic velocities in liquid mixtures. *Proc Indian Acad Sci.* 1936;3:297-303.
2. Eyring H, Hirschfelder JO. The theory of transport properties of polyatomic gases and liquids. *J Chem Phys.* 1936;4:283-289.
3. Eyring H, Kincaid JF. Ultrasonic free length and compressibility in liquids. *J Chem Phys.* 1938;6:67-74.
4. Nikam A, Jagdale BS, Sawant AB, Hasan M. Ultrasonic studies on binary mixtures. *Indian J Pure Appl Phys.* 2001;39:433-438.
5. Ali A, Nain A, Kamil M. Thermo-acoustic parameters of binary mixtures. *Thermochim Acta.* 1996;274:209-218.
6. Velmurugan V, Nambiarayanan TK, Srinivasa Rao A, Krishnan B. Ultrasonic study of binary mixtures. *Indian J Phys.* 1987;61B:105-110.
7. Wani SA. Ultrasonic investigation of thermodynamic parameters in binary liquid mixtures. *Int J Sci Res Sci Technol.* 2024.
8. Santhi N, Madhumitha J. Molecular interaction studies in binary liquid mixture through ultrasonic measurements. *Int J Adv Chem.* 2014.
9. Gutta S. Ultrasonic study of acoustical parameters of binary liquid mixtures of methyl benzoate with 1-octanol. *Res J Chem Sci.* 2013;3(3):14-19.
10. Gangwar, Saxena AK. Ultrasonic study of molecular interaction in binary mixtures. *Res J Chem Sci.* 2013;3(2):27-30.
11. Sujata S, Paikaray R. Ultrasonic and theoretical study of binary mixture of two polar liquids. *Res J Chem Sci.* 2013;3(6):24-31.
12. Saxena C, Mohan C, Saxena A, Shukla NK. Ultrasonic studies and molecular interactions of ethylamine and benzyl alcohol mixtures. *Res J Chem Sci.* 2013;3(6):10-13.
13. Nithiyanantham BK, et al. Ultrasonic study on some monosaccharides in aqueous media at 298.15 K. *Arab J Chem.* 2010.
14. Kadam UB, Hiray AP, Sawant AB, Hasan M. Densities, viscosities, and ultrasonic velocity studies of chloroform-alkanol mixtures. *J Chem Eng Data.* 2006;51(1):60-63.
15. Densities, viscosities, and ultrasonic velocity studies of trichloromethane mixtures. *J Chem Thermodyn.* 2006;38:1675-1683.
16. Krishna Reddy DVM, et al. Ultrasonic studies in binary mixtures of o-chlorophenol. *Orient J Chem.* 2022;39(2).
17. Bedare GR, Bhandakkar VD, Suryavanshi BM. Ultrasonic studies on molecular interactions in binary mixtures. *Int J Sci Res.* 2015.
18. Dange SP. Nonlinear ultrasonic propagation study of binary liquid mixture at 308 K. *J Emerg Technol Innov Res.* 2021.
19. Ultrasonic studies in ternary mixtures: water + isopropanol + pyridine. *Chem Thermodyn Thermal Anal.* 2022;5.
20. Sirohi A, et al. Estimation of ultrasonic velocity, density, internal pressure, and thermophysical parameters of ionic liquid mixtures. *ACS Omega.* 2024;9:19363-19377.
21. Ultrasonic investigation of binary liquid mixture's excess thermodynamic characteristics at various temperatures. *Chem Thermodyn Thermal Anal.* 2025;20:100223.
22. Nikam PS, et al. Ultrasonic studies of molecular interaction. *Indian J Pure Appl Phys.* 2001;39:433-438.
23. Fort HE, Moore WR. Ultrasonic absorption in binary liquids. *Trans Faraday Soc.* 1979;61:687-696.
24. Subramanyam Reddy K, Naidu PR. Ultrasonic compressibility studies. *Aust J Chem.* 1979;32.
25. Ranganayakulu SV, Sreenivas Reddy C, Linga Reddy D. Ultrasonic velocity in binary mixtures. *J Acoust Soc India.* 2003;31:295-302.
26. Jaya Kumar N, Karunanidhi M, Appan V. Acoustic parameters of binary mixtures. *Indian J Pure Appl Phys.* 1999;34:76-82.
27. Rajagopalan R. Ultrasonic compressibility and adiabatic parameters. *Acustica.* 1988;66:63-72.
28. Moynihan CT, Brobst MB. Ultrasonic relaxation in liquids. *J Chem Phys.* 1970;53:6363-6370.
29. Cussler EL. Diffusion: Mass transfer in fluid systems. 3rd ed. Cambridge (UK): Cambridge University Press; 2009.
30. Rainwater JC, McCormick FM. Ultrasonic characterization of liquids. *J Acoust Soc Am.* 1962;34:1897-1905.