

E-ISSN: 2709-9423
P-ISSN: 2709-9415
Impact Factor (RJIF): 5.29
JRC 2026; 7(1): 36-39
© 2026 JRC
www.chemistryjournal.net
Received: 26-11-2025
Accepted: 30-12-2025

Ankur Malik
Department of Chemistry, Pt. Jawaharlal Nehru College, Banda, (Affiliated to Bundelkhand University, Jhansi, Uttar Pradesh, India

Indian traditional knowledge of chemical sciences

Ankur Malik

DOI: <https://www.doi.org/10.22271/reschem.2026.v7.i1a.248>

Abstract

One of the most enduring and varied traditions of material knowledge in the pre-modern world can be found in the history of chemical sciences in the Indian subcontinent. Indian academics, craftspeople, doctors, and metallurgists created sophisticated understandings of substances, transformations, and processes that are now included in the field of chemical science long before chemistry was formally recognized as a modern scientific discipline in nineteenth-century Europe. Ayurveda, Rasashastra (Indian alchemy and iatrochemistry), metallurgy, dyeing, ceramics, fermentation, and mineral processing are examples of larger intellectual systems that incorporated these insights. In order to provide a thorough academic overview of Indian traditional knowledge of chemical sciences, this literature review synthesizes classical textual sources, archaeological evidence, and contemporary scholarly interpretations. Primary Sanskrit texts, thematic areas like alchemy and metallurgy, methodological frameworks, epistemological underpinnings, and the applicability of this knowledge to worldwide scientific histories are all critically examined. In particular, the review highlights the need for interdisciplinary approaches that connect textual scholarship, archaeology, and contemporary analytical chemistry. It also identifies historiographical debates and future research directions.

Keywords: Indian chemistry, Rasashastra, Ayurveda, traditional knowledge systems, metallurgy, alchemy, history of science

Introduction

Chemistry's historical developments in ancient Greece, the Islamic Golden Age, and early modern Europe have historically been the main subjects of study. But over the last few decades, scientific historians have come to acknowledge that advanced chemical knowledge also evolved independently in other places, such as China and India. Chemical knowledge did not develop in India as a separate, independent field known as "chemistry" in the contemporary sense. Rather, it was deeply ingrained in artisanal, philosophical, metallurgical, and medical traditions. Indian traditional knowledge systems exhibit systematic experimentation, substance classification, repeatable methods, and specialized instruments—all essential elements of chemical science—despite this disparity in disciplinary organization.

From the Indus Valley Civilization (c. 2600-1900 BCE) through the Vedic and post-Vedic eras, as well as the classical and medieval periods, Indian traditional chemical knowledge spans a lengthy historical arc. While textual sources written mostly in Sanskrit provide detailed procedural descriptions, archaeological remains such as metal artifacts, beads, ceramics, and pigments offer tangible evidence of chemical technologies. In order to place Indian traditional chemical sciences within larger global scientific histories and avoid anachronistic interpretations, this literature review attempts to synthesize the body of existing research on the subject.

This review's four goals are as follows: (1) to survey primary textual sources that are pertinent to chemical knowledge in ancient and medieval India; (2) to analyze major thematic domains like metallurgy, Ayurveda, and Rasashastra; (3) to look at methodological and epistemological aspects of Indian chemical traditions; and (4) to identify areas for future research.

2. Sources and Methodology of the Review

Three primary sources are used in this assessment of the literature: contemporary secondary research, archeological and material evidence, and classical textual literature. Ayurvedic compendia like the Charaka Samhita and Sushruta Samhita, alchemical treatises like

Correspondence
Ankur Malik
Department of Chemistry, Pt. Jawaharlal Nehru College, Banda, (Affiliated to Bundelkhand University, Jhansi, Uttar Pradesh, India

Rasarnava and Rasaratna Samuccaya, and technical or administrative writings like Kautilya's Arthashastra are examples of primary texts. Modern scholars analyze these literature through critical editions, translations, and commentary.

Metallurgical relics, furnaces, crucibles, slag, pigments, and objects found at locations around the Indian subcontinent are examples of archaeological evidence. These tangible facts support written narratives and enable scientific verification using contemporary analytical methods. Historical analyses, philological research, and multidisciplinary studies that are published in journals, edited volumes, and monographs make up secondary literature. The review takes a critical historiographical stance, placing traditional Indian chemical knowledge within its intellectual and cultural framework while acknowledging its strengths and weaknesses.

3. Early Foundations of Chemical Knowledge in India

3.1 Indus Valley Civilization

The Indus Valley Civilization is where the earliest indications of chemical understanding in India may be found. Advanced methods in metallurgy, ceramics, beadmaking, and pigment manufacture are revealed by archaeological digs at locations like Harappa and Mohenjodaro. Artifacts made of copper, bronze, and gold show precise metalworking and alloying techniques. A grasp of surface chemistry and high-temperature reactions is demonstrated by the creation of faience and glazed beads. These technologies suggested systematic transmission of technical knowledge rather than being entirely empirical or

random. Instead, they mirrored standardized practices. Material remnants show an early basis for later advancements in chemical sciences, despite the lack of legible textual records from this era.

3.2 Vedic and Post-Vedic Periods

Metals, colors, fermentation, and therapeutic substances are all mentioned in Vedic literature (c. 1500-600 BCE). The Rigveda has hymns that discuss the creation of intoxicating drinks like soma, copper (ayas), and gold (hiranya). Within philosophical frameworks, fire (agni), transformation, and material processes are discussed in later Brahmanical and Upanishadic texts.

The Shulba Sutras and Dharmashastras are examples of post-Vedic literature that provide practical directions that subtly reflect chemical knowledge, such as how to prepare altars using particular materials and quantities. The conceptual foundation for following generations' more detailed chemical treatises was established by these early references (Fig. 1).

4. Ayurveda and Medicinal Chemistry

4.1 Conceptual Foundations

One of the most important sources of chemical knowledge is the old Indian medical system known as Ayurveda. Plant, animal, mineral, and metallic materials prepared *via* extraction, purification, heating, fermentation, and combination are included in its pharmacopeia. According to Ayurvedic doctrine, substances are categorized by taste (rasa), characteristics (guna), potency (virya), post-digestive effect (vipaka), and specific action (prabhava).

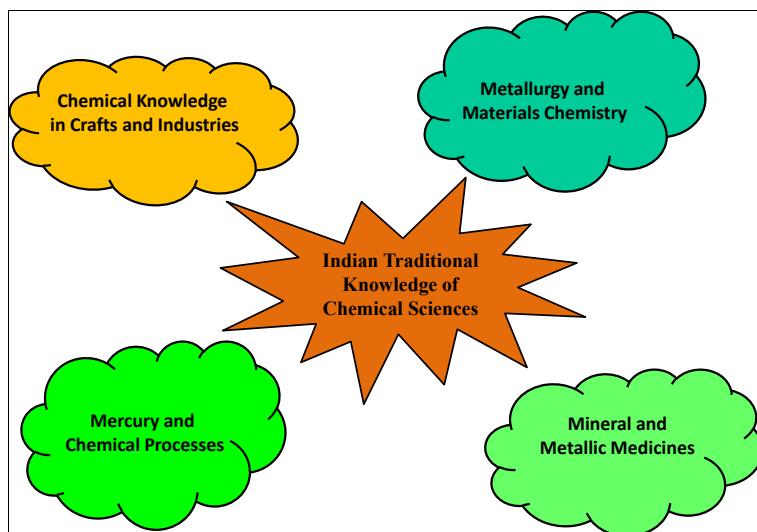


Fig 1: Treasure of traditional knowledge of chemical sciences in ancient India

4.2 Classical Texts

The Charaka Samhita focuses on internal medicine and offers thorough explanations of how drugs are prepared, including powders, decoctions, fermented liquids (such as arishta and asava), and medicinal ghee (ghrita). Known for its emphasis on surgery, the Sushruta Samhita also covers chemicals used for anesthetic, wound healing, and cauterization.

Systematic methods to dose, stability, shelf life, and synergistic effects-concepts strongly related to pharmaceutical chemistry-are revealed in these texts. Ayurvedic medicinal chemistry exhibits empirical rigor and

long-term clinical observation, despite being situated under humoral and philosophical perspectives.

4.3 Mineral and Metallic Medicines

A stronger relationship with Rasashastra resulted from the later Ayurvedic traditions' increased incorporation of metals and minerals. To make substances like mercury, sulfur, iron, copper, and mica therapeutically safe, they underwent complex purifying (shodhana) and incineration (marana) procedures. These processes demonstrate sophisticated control over phase shifts, oxidation, and reduction, among other chemical transformations.

5. Rasashastra: Indian Alchemy and Iatrochemistry

5.1 Historical Development

Between the early Common Era and the Middle Ages, Rasashastra became a unique tradition. Although Rasashastra is frequently translated as "alchemy," its main objectives were different from those of European alchemy. It placed more emphasis on the creation of powerful medications, rejuvenation treatments (rasayana), and longevity than it did on the conversion of basic metals into gold.

5.2 Key Texts and Authors

The Rasarnava, Rasa Ratnakara, Rasaratna Samuccaya, and Rasa Kamadhenu are important Rasashastra texts. These publications outline crucibles, furnaces, laboratory equipment, distillation methods, and safety measures. A complicated historical character, Nagarjuna is often credited with developing a number of alchemical techniques, especially those involving mercury.

5.3 Mercury and Chemical Processes

In Rasashastra, Mercury (parada) holds a central place. Methods for its extraction, purification, amalgamation, and stabilization are described in texts. Hands-on experimentation is evident in the detailed procedural descriptions of processes including grinding, heating, sublimation, and distillation. Certain Rasashastra concoctions produce chemically stable substances, according to recent scientific research, casting doubt on the notion that these activities were only symbolic or spiritual.

6. Metallurgy and Materials Chemistry

6.1 Iron and Steel Technologies

Indian metallurgy became remarkably sophisticated, especially when it came to producing iron and steel. The renowned Delhi iron pillar, which has withstood corrosion for more than a millennium, is a prime example of sophisticated understanding of alloy composition and environmental interactions. Southern India produced Wootz steel, which was well-known for its remarkable mechanical qualities and high carbon content.

6.2 Non-Ferrous Metallurgy

Ancient and medieval India made extensive use of copper, bronze, brass, silver, and gold. Ore selection, smelting, refining, and alloying are all covered in textual sources. The state's role in the chemical industry is shown in the Arthashastra, which offers comprehensive administrative procedures for mining and metal manufacturing.

6.3 Zinc Distillation

The early isolation of metallic zinc using downward distillation, especially at locations like Zawar in Rajasthan, is one of the most important achievements of Indian metallurgy. The usage of regulated heating systems and retorts is confirmed by archeological evidence, which predates comparable advancements in Europe by several centuries.

7. Chemical Knowledge in Crafts and Industries

Beyond medicine and metallurgy, traditional Indian chemical expertise was used in crafts including fermentation, glassmaking, pottery, tanning, dyeing, and cosmetics. Precise chemical processing was necessary for

natural dyes made from turmeric, madder, and indigo. Even in the absence of microbial theory, fermentation methods utilized in food and drink show an awareness of biochemical changes. These artisanal methods, which emphasized implicit knowledge and skill, were frequently passed down through guilds and family traditions. They are a vital element of India's chemical legacy, despite being less well-documented in classical texts.

8. Epistemology and Methodology

In contrast to contemporary positivist science, Indian traditional chemical sciences functioned within different epistemological frameworks. Textual authority, experiential validation, and philosophical coherence were frequently used to justify knowledge. Internal consistency and practical applicability were guaranteed through the application of tantrayukti (logical and methodological principles) in text composition. Rather than being carried out solely for theoretical reasons, experimentation was usually integrated into therapeutic or artisanal contexts. However, the main characteristics of these traditions were reproducibility, observation, and gradual improvement.

9. Historiographical Perspectives and Critiques

The interpretation of Indian traditional chemical knowledge has been the subject of controversy in contemporary academia. These customs were frequently written off as unscientific or derivative in earlier colonial historiography. However, current historians warn against imposing contemporary scientific concepts retrospectively while highlighting their uniqueness and empirical sophistication. Reevaluating Rasashastra and metallurgy has benefited greatly from interdisciplinary study integrating philology, archeology, and analytical chemistry. These investigations show that, although being explained by antiquated theoretical frameworks, many ancient methods were chemically sound.

10. Contemporary Relevance and Future Directions

Modern methods are still influenced by Indian traditional chemical knowledge, especially in Ayurveda and traditional crafts. Drug development and sustainable materials research may benefit from scientific assessment of conventional formulations. However, ethical issues like cultural appropriation and intellectual property rights need to be taken into account.

Future studies should concentrate on regional customs, lesser-known writings, and experimental reproduction of historical processes. Global patterns of knowledge exchange can be further illuminated through comparative research with various pre-modern chemical traditions.

11. Conclusion

The rich, multilayered body of knowledge that has developed over millennia is represented by the Indian tradition of chemical sciences. It exhibits methodical experimentation, material innovation, and theoretical contemplation and is integrated with medicinal, metallurgical, and artisanal processes. Indian traditional chemical knowledge is an important part of the world's scientific past, even if it differs conceptually from modern chemistry. Acknowledging and critically interacting with this legacy enhances our comprehension of the past as well as the various ways that scientific knowledge advances.

Conflict of Interests

Authors declare no conflict of interest

References

1. Chattopadhyaya D. History of science and technology in ancient India. Calcutta: Firma KLM; 1986.
2. Dash B, Kashyap L. Rasashastra: the Indian alchemical tradition. New Delhi: Concept Publishing; 2001.
3. Filliozat J. The classical doctrine of Indian medicine. Delhi: Munshiram Manoharlal; 1964.
4. Govindarajan K. Studies in ancient Indian metallurgy. Indian J Hist Sci. 1997;32(2):123–145.
5. Ray PC. A history of Hindu chemistry. Vols. 1–2. Calcutta: Bengal Chemical; 1902.
6. Sharma PV. Charaka Samhita (English translation). Varanasi: Chaukhamba Orientalia; 1992.
7. Srinivasan S, Ranganathan S. India's legendary wootz steel. Current Science. 2004;86(12):1546–1552.
8. White DG. The alchemical body: Siddha traditions in medieval India. Chicago: University of Chicago Press; 1996.