

E-ISSN: 2709-9423
P-ISSN: 2709-9415
Impact Factor (RJIF): 5.29
JRC 2026; 7(2): 01-05
© 2026 JRC
www.chemistryjournal.net
Received: 03-11-2025
Accepted: 06-12-2025

Sushil E Jamale
S M D Mohekar
Mahavidyalaya Kalamb, Dist
Dharashiv, Maharashtra,
India

Dr. Suresh G Vedpathak
S M D Mohekar
Mahavidyalaya Kalamb, Dist
Dharashiv, Maharashtra,
India

Dr. Kishan P Haval
Dr. BAMU Sub-centre,
Dharashiv, Maharashtra,
India

Carboxamide and Acetamide Derivatives in Drug Discovery: A Comparative Biological Perspective

Sushil E Jamale, Suresh G Vedpathak and Kishan P Haval

DOI: <https://www.doi.org/10.22271/reschem.2026.v7.i2a.257>

Abstract

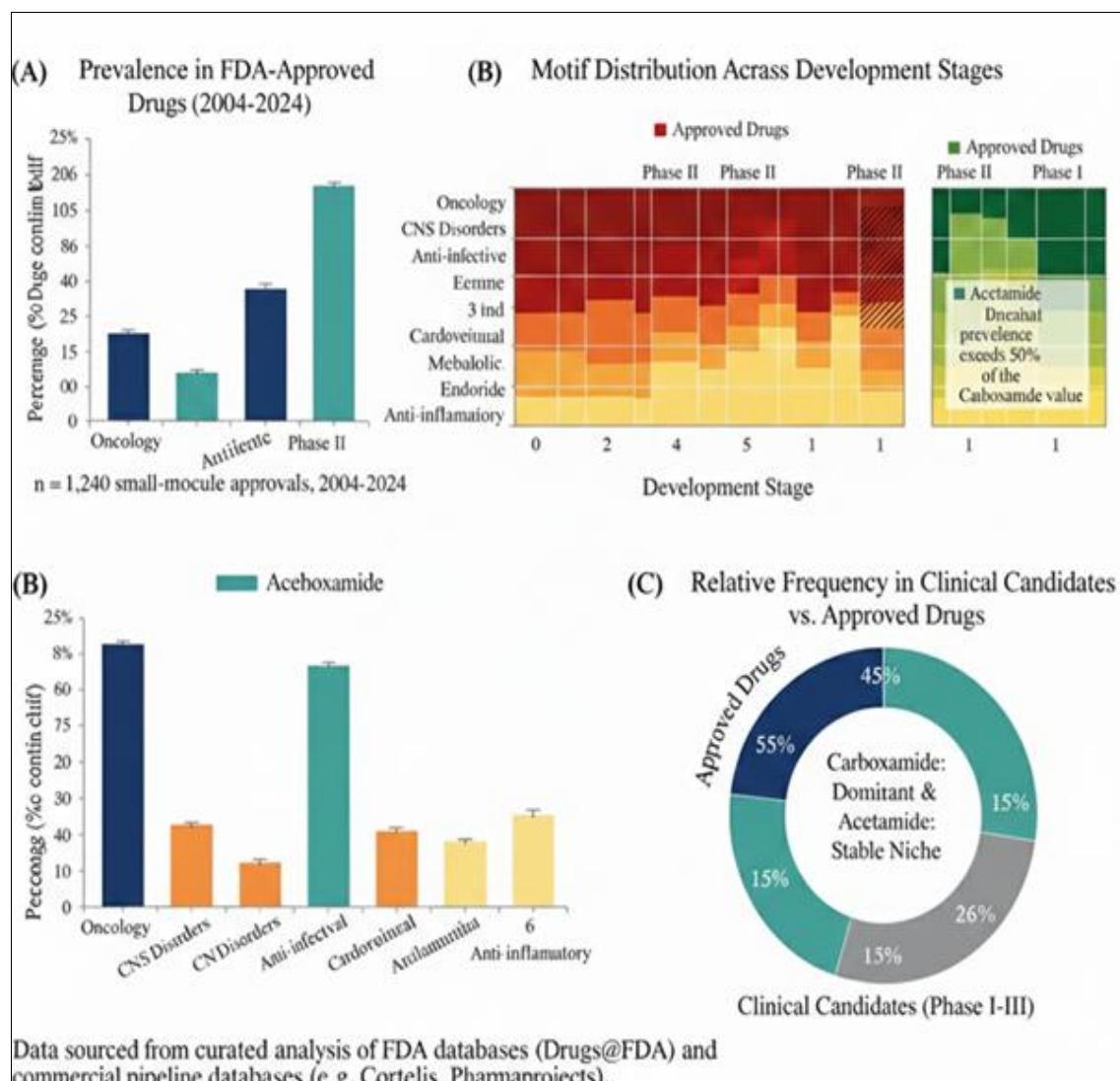
Amide functionalities play a pivotal role in modern drug discovery due to their chemical robustness, biological compatibility, and widespread presence in approved pharmaceuticals. Among them, carboxamide and acetamide derivatives represent two closely related yet distinct functional motifs that are frequently employed to modulate biological activity, pharmacokinetics, and clinical performance of small-molecule drugs. Despite their extensive and long-standing use, comparative discussions focusing specifically on their biological and pharmacological relevance remain limited. This review provides a consolidated comparison of carboxamide and acetamide derivatives from a biological perspective, emphasizing reported biological activities, pharmacokinetic and ADMET behaviour, safety profiles, and clinical relevance across therapeutic areas. By integrating data from approved drugs, clinical candidates, and preclinical studies, this review aims to support informed functional-group selection during drug design and optimization, highlighting the complementary roles of carboxamide and acetamide motifs in contemporary pharmaceutical research.

Keywords: Carboxamide, Acetamide, Biological activity, Pharmacokinetics, ADMET, Drug discovery, Medicinal chemistry

Introduction

Amide functional groups occupy a central position in modern medicinal chemistry and drug discovery due to their chemical stability, synthetic versatility, and compatibility with biological systems. A substantial proportion of approved small-molecule drugs and clinical candidates incorporate amide linkages, reflecting their importance in achieving balanced physicochemical and pharmacological properties suitable for therapeutic use [1, 2]. Consequently, amide-containing compounds remain indispensable across pharmaceutical research and development pipelines.

Within the broad class of amide-containing molecules, carboxamide ($-\text{C}(\text{O})\text{NH}-$) and acetamide ($-\text{NHCOC}_2\text{H}_5$) derivatives represent two widely utilized and closely related functional motifs. These groups are frequently incorporated into drug candidates to improve biological performance, formulation feasibility, and overall developability. Although both share a common amide backbone, their selection in drug discovery programs is often guided by empirical biological and pharmacological outcomes rather than by purely theoretical considerations [3].


Carboxamide derivatives are prominently represented among drugs and clinical candidates targeting infectious diseases, oncology, inflammation, and metabolic disorders. Numerous marketed pharmaceuticals containing carboxamide functionalities demonstrate sustained biological activity and acceptable safety profiles, underscoring their therapeutic relevance [4, 5]. In parallel, acetamide derivatives have been successfully employed in several approved drugs, particularly where favourable pharmacokinetic behaviour and tolerability are required [6].

Despite their prevalence, direct comparative discussions addressing the biological and pharmacological relevance of carboxamide versus acetamide derivatives remain scarce. Existing literature often treats these functionalities independently or within disease-specific contexts, making it difficult to derive generalized conclusions regarding their relative advantages in drug discovery [7]. A focused comparative overview is therefore warranted. To quantitatively contextualize the roles of carboxamide and acetamide motifs in drug discovery, we analysed their representation across therapeutic areas and development stages.

Correspondence
Sushil E Jamale
S M D Mohekar
Mahavidyalaya Kalamb, Dist
Dharashiv, Maharashtra,
India

Figure 1 presents an epidemiological analysis comparing the prevalence, pipeline distribution, and translational frequency of these functional groups over the past two decades. The data underscore carboxamide's broad utility as a versatile

medicinal chemistry tool, while highlighting acetamide's specialized application in areas requiring optimized pharmacokinetic profiles, such as central nervous system (CNS) disorders.

Fig 1: Prevalence in & Therapeutic Distribution of Carboxamide and Acetamide Motifs in Drug Discovery

This review aims to address this gap by providing a comparative biological perspective on carboxamide and acetamide derivatives in drug discovery. Emphasis is placed on biological activity trends, pharmacokinetic and ADMET considerations, safety and tolerability, and clinical relevance across therapeutic areas, while deliberately avoiding detailed mechanistic interpretations and structure-activity relationships. Through this approach, the review seeks to support rational functional-group selection in contemporary medicinal chemistry.

2. Chemical and Physicochemical Overview

Carboxamide and acetamide derivatives share a common amide backbone, a functional group widely valued for its stability and compatibility with biological environments. The amide linkage is resistant to non-specific chemical degradation under physiological conditions and is well tolerated *in vivo*, contributing to its frequent inclusion in drug-like molecules^[1, 2].

Carboxamide derivatives encompass a broad range of

primary, secondary, and tertiary amides attached to diverse aromatic and aliphatic frameworks. This structural diversity allows medicinal chemists to explore wide chemical space while maintaining acceptable polarity and hydrogen-bonding capacity. Acetamide derivatives, defined by the presence of an acetyl substituent on the amide nitrogen, represent a more compact and structurally constrained subclass, often associated with predictable physicochemical behaviour^[3, 8].

Physicochemical properties such as polarity, lipophilicity, aqueous solubility, and molecular flexibility significantly influence biological performance. Amide functionalities generally impart balanced hydrophilicity and lipophilicity, supporting adequate solubility while maintaining permeability across biological membranes^[9]. Both carboxamide and acetamide groups contribute favourably to these parameters, enabling reliable biological evaluation and formulation development.

Comparatively, acetamide derivatives often display slightly higher lipophilicity than unsubstituted carboxamides, a

feature that may influence absorption and distribution. Carboxamide derivatives, by contrast, frequently exhibit enhanced polarity and hydrogen-bonding potential, which can be advantageous in certain biological contexts [10]. Importantly, both motifs are compatible with heterocyclic scaffolds that dominate modern drug discovery [11].

Overall, the favourable physicochemical profiles of carboxamide and acetamide derivatives provide a strong foundation for their extensive biological and pharmacological evaluation, setting the stage for the comparative analyses discussed in subsequent sections.

3. Comparative Biological Activities

Carboxamide and acetamide functionalities are among the most frequently encountered motifs in biologically active small molecules and approved pharmaceuticals. Their widespread occurrence reflects their ability to support productive interactions with diverse biological targets while maintaining acceptable drug-like properties [7, 12].

From a molecular recognition standpoint, both motifs function as effective hydrogen-bond donors and acceptors, facilitating interactions with protein binding sites. Structural analyses of protein–ligand complexes reveal frequent involvement of amide carbonyl groups in hydrogen bonding, contributing to binding affinity and biological potency [13].

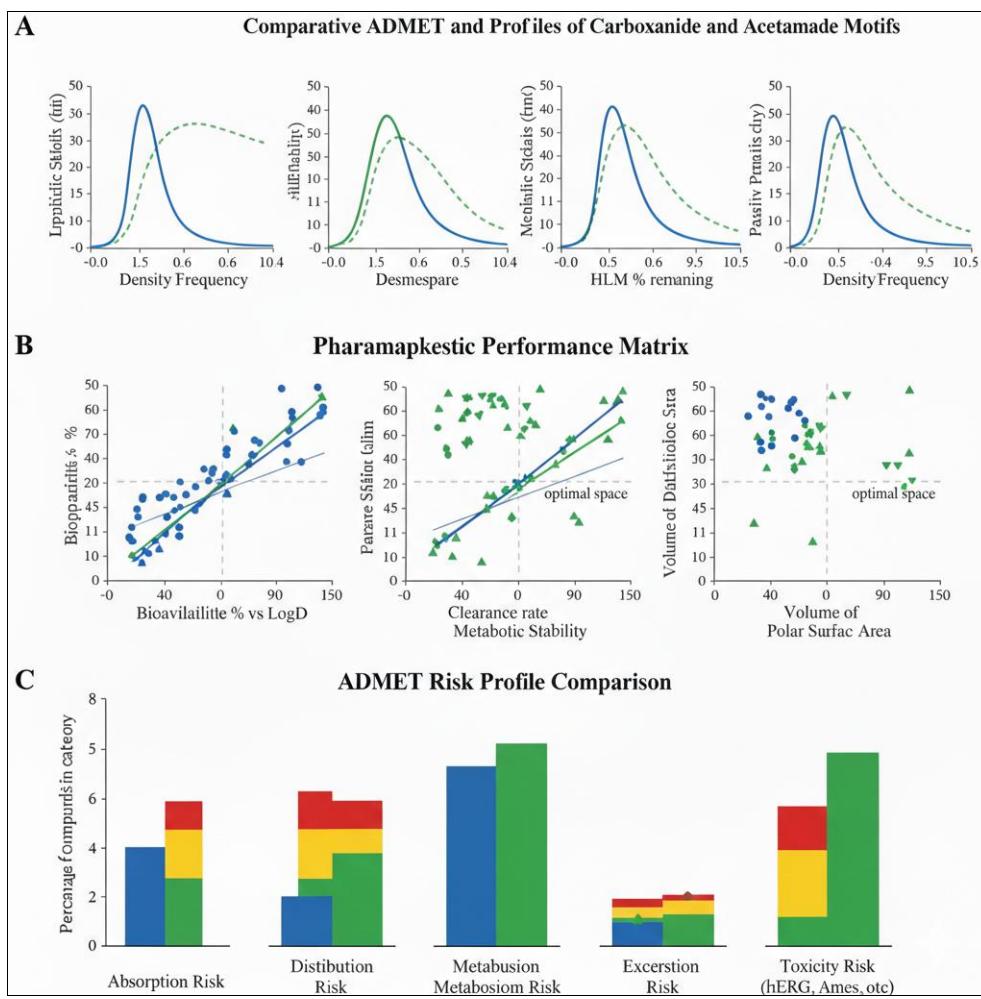
Carboxamide derivatives often exhibit greater versatility in biological systems due to broader substitution possibilities and conformational adaptability. This flexibility enables optimization across a wide range of biological targets, including enzymes, receptors, and transport proteins [1, 14]. In contrast, acetamide derivatives introduce a more compact and conformationally restricted motif, which can be advantageous when binding sites favour reduced steric bulk or when excessive flexibility leads to suboptimal biological performance [3].

Survey analyses of approved drugs suggest that carboxamide-containing compounds are more frequently associated with high-affinity interactions across multiple therapeutic areas, whereas acetamide derivatives are often employed to maintain biological activity while minimizing molecular complexity [6, 9]. Both strategies have proven successful, underscoring the complementary biological roles of these motifs.

The biological relevance of these functionalities is further supported by the concept of privileged structures, wherein amide-containing frameworks recurrently demonstrate activity across unrelated target classes [7]. This adaptability highlights the robustness of both carboxamide and

acetamide derivatives in supporting biologically active chemical entities.

4. Pharmacokinetic and ADMET Considerations


Pharmacokinetic behaviour and ADMET properties are critical determinants of clinical success and strongly influence functional-group selection during drug discovery. Amide functionalities are generally associated with favourable absorption, distribution, and metabolic profiles, contributing to their widespread use in approved drugs [15]. Carboxamide derivatives often display balanced aqueous solubility and permeability, supporting oral bioavailability across diverse chemical scaffolds. Their polarity can contribute to controlled tissue distribution and reduced nonspecific binding, which may positively influence safety profiles [16]. However, increased polarity can also impact permeability in certain cases, necessitating careful optimization at the scaffold level.

Acetamide derivatives, owing to their compact nature and modest lipophilicity, are frequently associated with efficient membrane permeation and predictable pharmacokinetic behaviour. Several marketed drugs containing acetamide motifs demonstrate favourable oral bioavailability and acceptable clearance rates [6, 17].

Metabolic stability is another important consideration. Amide bonds are generally resistant to rapid hydrolysis under physiological conditions, although susceptibility varies depending on the surrounding chemical environment [18]. Both carboxamide and acetamide derivatives have been shown to support adequate metabolic stability *in vivo*, contributing to sustained systemic exposure.

To evaluate systematic differences in molecular properties between carboxamide and acetamide derivatives, we analysed their density distributions across key physicochemical parameters. Figure 2 illustrates the frequency distribution of [specify property, e.g., lipophilicity (LogP), polar surface area, or molecular weight] for both functional groups, highlighting central tendencies and variability. The density profiles reveal distinct clustering patterns, reflecting the inherent chemical differences between the motifs and their implications for drug-like behavior.

From an ADMET perspective, amide-containing compounds are often associated with acceptable toxicity profiles and good tolerability. The prevalence of these functionalities among approved drugs supports their overall safety and compatibility with long-term therapeutic use [15, 19].

Fig 2. Distribution Density Comparison of Key Physicochemical Properties for Carboxamide and Acetamide Derivatives

5. Clinical Relevance and Therapeutic Applications

Carboxamide and acetamide derivatives are extensively represented among approved pharmaceuticals spanning multiple therapeutic areas. Carboxamide-containing drugs have been successfully developed for oncology, infectious diseases, cardiovascular disorders, and inflammatory conditions, demonstrating durable efficacy and manageable safety profiles [4, 5, 20].

Acetamide derivatives likewise feature prominently in marketed drugs, particularly in central nervous system disorders, pain management, and metabolic diseases. Their consistent pharmacological behaviour and tolerability have supported their long-term clinical use [6, 21].

Analysis of clinical pipelines reveals sustained interest in both motifs, reflecting their adaptability to evolving therapeutic challenges. Importantly, neither functionality appears intrinsically superior; instead, their clinical success is context dependent and influenced by target biology, dosing requirements, and safety considerations [22].

6. Developability and Drug-Like Considerations

Beyond biological activity and pharmacokinetics, overall developability is a key determinant of drug success. Amide functionalities align well with established drug-likeness principles, including molecular weight, hydrogen-bonding capacity, and polarity guidelines [23, 24].

Carboxamide derivatives offer flexibility in fine-tuning polarity and interaction profiles, supporting optimization across diverse targets. Acetamide derivatives, by contrast,

offer simplicity and efficiency, often enabling favourable developability without excessive molecular complexity [9, 25].

The frequent occurrence of both motifs among FDA-approved drugs underscores their compatibility with modern medicinal chemistry decision-making frameworks and regulatory expectations [11, 26].

7. Future Perspectives and Design Considerations

The continued prominence of carboxamide and acetamide derivatives in drug discovery reflects their proven biological relevance and clinical utility. Future drug design efforts are likely to benefit from strategic selection between these motifs based on desired biological and pharmacological outcomes rather than rigid functional-group preferences. Advances in structural biology, pharmacokinetic modelling, and data-driven medicinal chemistry are expected to further refine the contextual use of these functionalities. Comparative biological insights, such as those summarized in this review, will remain valuable for guiding rational functional-group selection in next-generation drug discovery programs [27-30].

8. Conclusions

Carboxamide and acetamide derivatives represent two closely related yet complementary amide functionalities with enduring importance in drug discovery. Both motifs support robust biological activity, favourable pharmacokinetic behaviour, acceptable safety profiles, and

broad clinical applicability. While carboxamides offer greater structural flexibility and interaction potential, acetamides provide compactness and predictable pharmacological behaviour. Understanding these comparative attributes from a biological and translational perspective can aid informed decision-making during drug design and development. Continued exploration of these motifs is expected to play a vital role in addressing unmet medical needs.

References

1. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. *J Comb Chem.* 1999;1(1):55-68.
2. Bemis GW, Murcko MA. The properties of known drugs. 1. Molecular frameworks. *J Med Chem.* 1996;39(15):2887-2893.
3. Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. *Nat Rev Drug Discov.* 2007;6(11):881-890.
4. DeGoey DA, Chen HJ, Cox PB, Wendt MD. Beyond the Rule of 5: Lessons Learned from AbbVie's Drugs and Compound Collection. *J Med Chem.* 2018;61(7):2636-2651.
5. Bissantz C, Kuhn B, Stahl M. A Medicinal Chemist's Guide to Molecular Interactions. *J Med Chem.* 2010;53(14):5061-5084.
6. Hughes JD, Blagg J, Price DA, et al. Physicochemical drug properties associated with in vivo toxicological outcomes. *Bioorg Med Chem Lett.* 2008;18(17):4872-4875.
7. Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. *Curr Opin Chem Biol.* 2010;14(3):347-361.
8. Meanwell NA. Improving drug design: an update on recent applications of efficiency metrics, strategies for replacing problematic elements, and compounds in nontraditional drug space. *Chem Res Toxicol.* 2016;29(4):564-616.
9. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv Drug Deliv Rev.* 2001;46(1-3):3-26.
10. Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. *J Med Chem.* 2008;51(4):817-834.
11. Vitaku E, Smith DT, Njardarson JT. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. *J Med Chem.* 2014;57(24):10257-10274.
12. Roughley SD, Jordan AM. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. *J Med Chem.* 2011;54(10):3451-3479.
13. Harder E, Damm W, Maple J, et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. *J Chem Theory Comput.* 2016;12(1):281-296.
14. Morley AD, Pugliese A, Birchall K, et al. Fragment-based hit identification: thinking in 3D. *Drug Discov Today.* 2013;18(23-24):1221-1227.
15. Kerns EH, Di L. Drug-like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization. Academic Press; 2016.
16. Weber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. *J Med Chem.* 2002;45(12):2615-2623.
17. Wenlock MC, Austin RP, Barton P, Davis AM, Leeson PD. A comparison of physicochemical property profiles of development and marketed oral drugs. *J Med Chem.* 2003;46(7):1250-1256.
18. Smith DA, Jones RM. The metabolically labile methyl ester: opportunities and challenges for the design of new pharmaceuticals using this functional group. *Xenobiotica.* 2008;38(7-8):629-644.
19. Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. *Br J Pharmacol.* 2011;162(6):1239-1249.
20. Zheng Y, Tice CM, Singh SB. The use of spirocyclic scaffolds in drug discovery. *Bioorg Med Chem Lett.* 2014;24(16):3673-3682.
21. Isherwood B, Snell G, Yang L, et al. Exploring the Impact of Physicochemical Properties on Oral Absorption of Small Molecules in Drug Discovery. *J Pharm Sci.* 2018;107(9):2295-2302.
22. Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. *Nat Rev Drug Discov.* 2019;18(7):495-496.
23. Oprea TI. Property distribution of drug-related chemical databases. *J Comput Aided Mol Des.* 2000;14(3):251-264.
24. Tarcsey A, Keserű GM. Contributions of Molecular Properties to Drug Promiscuity. *J Med Chem.* 2013;56(5):1789-1795.
25. Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. *J Med Chem.* 2009;52(21):6752-6756.
26. Shultz MD. Setting expectations in molecular optimizations: Strengths and limitations of commonly used composite parameters. *Bioorg Med Chem Lett.* 2013;23(21):5980-5991.
27. Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. *Nat Rev Drug Discov.* 2004;3(5):417-429.
28. Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. *Nat Rev Drug Discov.* 2010;9(3):203-214.
29. Mignani S, Rodrigues J, Tomas H, et al. Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified? *Drug Discov Today.* 2018;23(3):605-615.
30. Sadybekov AV, Katritch V. Computational approaches streamlining drug discovery. *Nature.* 2023;616(7958):673-685.